Extremal solutions for nonlinear neumann problems

Antonella Fiacca; Raffaella Servadei

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2001)

  • Volume: 21, Issue: 2, page 191-206
  • ISSN: 1509-9407

Abstract

top
In this paper, we study a nonlinear Neumann problem. Assuming the existence of an upper and a lower solution, we prove the existence of a least and a greatest solution between them. Our approach uses the theory of operators of monotone type together with truncation and penalization techniques.

How to cite

top

Antonella Fiacca, and Raffaella Servadei. "Extremal solutions for nonlinear neumann problems." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 21.2 (2001): 191-206. <http://eudml.org/doc/271451>.

@article{AntonellaFiacca2001,
abstract = {In this paper, we study a nonlinear Neumann problem. Assuming the existence of an upper and a lower solution, we prove the existence of a least and a greatest solution between them. Our approach uses the theory of operators of monotone type together with truncation and penalization techniques.},
author = {Antonella Fiacca, Raffaella Servadei},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {upper solution; lower solution; order interval; truncation function; penalty function; pseudomonotone operator; coercive operator; extremal solution; nonlinear Neumann problem; -Laplacian},
language = {eng},
number = {2},
pages = {191-206},
title = {Extremal solutions for nonlinear neumann problems},
url = {http://eudml.org/doc/271451},
volume = {21},
year = {2001},
}

TY - JOUR
AU - Antonella Fiacca
AU - Raffaella Servadei
TI - Extremal solutions for nonlinear neumann problems
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2001
VL - 21
IS - 2
SP - 191
EP - 206
AB - In this paper, we study a nonlinear Neumann problem. Assuming the existence of an upper and a lower solution, we prove the existence of a least and a greatest solution between them. Our approach uses the theory of operators of monotone type together with truncation and penalization techniques.
LA - eng
KW - upper solution; lower solution; order interval; truncation function; penalty function; pseudomonotone operator; coercive operator; extremal solution; nonlinear Neumann problem; -Laplacian
UR - http://eudml.org/doc/271451
ER -

References

top
  1. [1] R. Adams, Sobolev Spaces, Academic Press, New York 1975. 
  2. [2] R.B. Ash, Real Analysis and Probability, Academic Press, New York, San Francisco, London 1972. 
  3. [3] H. Brézis, Analyse Functionelle: Théorie et Applications, Masson, Paris 1983. 
  4. [4] F.E. Browder and P. Hess, Nonlinear Mappings of Monotone Type in Banach Spaces, J. Funct. Anal. 11 (1972), 251-294. Zbl0249.47044
  5. [5] T. Cardinali, N.S. Papageorgiou and R. Servadei, The Neumann Problem for Quasilinear Differential Equations, preprint. Zbl1122.35030
  6. [6] E. Casas and L.A. Fernández, A Green's Formula for Quasilinear Elliptic Operators, J. Math. Anal. Appl. 142 (1989), 62-73. Zbl0704.35047
  7. [7] E. Dancer and G. Sweers, On the Existence of a Maximal Weak Solution for a Semilinear Elliptic Equation, Diff. Integral Eqns 2 (1989), 533-540. Zbl0732.35027
  8. [8] J. Deuel and P. Hess, A Criterion for the Existence of Solutions of Nonlinear Elliptic Boundary Value Problems, Proc. Royal Soc. Edinburgh (A) 74 (1974-75), 49-54. Zbl0331.35028
  9. [9] N. Dunford and J.T. Schwartz, Linear Operators. Part I: General Theory, Interscience Publishers, New York 1958-1971. Zbl0084.10402
  10. [10] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin 1983. Zbl0562.35001
  11. [11] E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer, New York 1975. Zbl0307.28001
  12. [12] S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis. Volume I: Theory, Kluwert, Dordrecht, The Netherlands 1997. Zbl0887.47001
  13. [13] N. Kenmochi, Pseudomonotone Operators and Nonlinear Elliptic Boundary Value Problems, J. Math. Soc. Japan 27 (1975), 121-149. Zbl0292.35034
  14. [14] J. Leray and J.L. Lions, Quelques Resultats de Visik sur les Problems Elliptiques Nonlinearities par Methodes de Minty-Browder, Bull. Soc. Math. France 93 (1965), 97-107. Zbl0132.10502
  15. [15] J.J. Nieto and A. Cabada, A Generalized Upper and Lower Solutions Method for Nonlinear Second Order Ordinary Differential Equations, J. Appl. Math. Stochastic Anal. 5 (2) (1992), 157-165. Zbl0817.34016
  16. [16] E. Zeidler, Nonlinear Functional Analysis and its Applications II, Springer-Verlag, New York 1990. Zbl0684.47029

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.