# Extremal solutions for nonlinear neumann problems

Antonella Fiacca; Raffaella Servadei

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2001)

- Volume: 21, Issue: 2, page 191-206
- ISSN: 1509-9407

## Access Full Article

top## Abstract

top## How to cite

topAntonella Fiacca, and Raffaella Servadei. "Extremal solutions for nonlinear neumann problems." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 21.2 (2001): 191-206. <http://eudml.org/doc/271451>.

@article{AntonellaFiacca2001,

abstract = {In this paper, we study a nonlinear Neumann problem. Assuming the existence of an upper and a lower solution, we prove the existence of a least and a greatest solution between them. Our approach uses the theory of operators of monotone type together with truncation and penalization techniques.},

author = {Antonella Fiacca, Raffaella Servadei},

journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},

keywords = {upper solution; lower solution; order interval; truncation function; penalty function; pseudomonotone operator; coercive operator; extremal solution; nonlinear Neumann problem; -Laplacian},

language = {eng},

number = {2},

pages = {191-206},

title = {Extremal solutions for nonlinear neumann problems},

url = {http://eudml.org/doc/271451},

volume = {21},

year = {2001},

}

TY - JOUR

AU - Antonella Fiacca

AU - Raffaella Servadei

TI - Extremal solutions for nonlinear neumann problems

JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization

PY - 2001

VL - 21

IS - 2

SP - 191

EP - 206

AB - In this paper, we study a nonlinear Neumann problem. Assuming the existence of an upper and a lower solution, we prove the existence of a least and a greatest solution between them. Our approach uses the theory of operators of monotone type together with truncation and penalization techniques.

LA - eng

KW - upper solution; lower solution; order interval; truncation function; penalty function; pseudomonotone operator; coercive operator; extremal solution; nonlinear Neumann problem; -Laplacian

UR - http://eudml.org/doc/271451

ER -

## References

top- [1] R. Adams, Sobolev Spaces, Academic Press, New York 1975.
- [2] R.B. Ash, Real Analysis and Probability, Academic Press, New York, San Francisco, London 1972.
- [3] H. Brézis, Analyse Functionelle: Théorie et Applications, Masson, Paris 1983.
- [4] F.E. Browder and P. Hess, Nonlinear Mappings of Monotone Type in Banach Spaces, J. Funct. Anal. 11 (1972), 251-294. Zbl0249.47044
- [5] T. Cardinali, N.S. Papageorgiou and R. Servadei, The Neumann Problem for Quasilinear Differential Equations, preprint. Zbl1122.35030
- [6] E. Casas and L.A. Fernández, A Green's Formula for Quasilinear Elliptic Operators, J. Math. Anal. Appl. 142 (1989), 62-73. Zbl0704.35047
- [7] E. Dancer and G. Sweers, On the Existence of a Maximal Weak Solution for a Semilinear Elliptic Equation, Diff. Integral Eqns 2 (1989), 533-540. Zbl0732.35027
- [8] J. Deuel and P. Hess, A Criterion for the Existence of Solutions of Nonlinear Elliptic Boundary Value Problems, Proc. Royal Soc. Edinburgh (A) 74 (1974-75), 49-54. Zbl0331.35028
- [9] N. Dunford and J.T. Schwartz, Linear Operators. Part I: General Theory, Interscience Publishers, New York 1958-1971. Zbl0084.10402
- [10] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin 1983. Zbl0562.35001
- [11] E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer, New York 1975. Zbl0307.28001
- [12] S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis. Volume I: Theory, Kluwert, Dordrecht, The Netherlands 1997. Zbl0887.47001
- [13] N. Kenmochi, Pseudomonotone Operators and Nonlinear Elliptic Boundary Value Problems, J. Math. Soc. Japan 27 (1975), 121-149. Zbl0292.35034
- [14] J. Leray and J.L. Lions, Quelques Resultats de Visik sur les Problems Elliptiques Nonlinearities par Methodes de Minty-Browder, Bull. Soc. Math. France 93 (1965), 97-107. Zbl0132.10502
- [15] J.J. Nieto and A. Cabada, A Generalized Upper and Lower Solutions Method for Nonlinear Second Order Ordinary Differential Equations, J. Appl. Math. Stochastic Anal. 5 (2) (1992), 157-165. Zbl0817.34016
- [16] E. Zeidler, Nonlinear Functional Analysis and its Applications II, Springer-Verlag, New York 1990. Zbl0684.47029

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.