A class of retracts in L p with some applications to differential inclusion

Grzegorz Bartuzel; Andrzej Fryszkowski

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2002)

  • Volume: 22, Issue: 2, page 213-224
  • ISSN: 1509-9407

How to cite

top

Grzegorz Bartuzel, and Andrzej Fryszkowski. "A class of retracts in $L^{p}$ with some applications to differential inclusion." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 22.2 (2002): 213-224. <http://eudml.org/doc/271480>.

@article{GrzegorzBartuzel2002,
author = {Grzegorz Bartuzel, Andrzej Fryszkowski},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {bounded domain; Laplace operator; Lipschitzean multifunction; retract; existence},
language = {eng},
number = {2},
pages = {213-224},
title = {A class of retracts in $L^\{p\}$ with some applications to differential inclusion},
url = {http://eudml.org/doc/271480},
volume = {22},
year = {2002},
}

TY - JOUR
AU - Grzegorz Bartuzel
AU - Andrzej Fryszkowski
TI - A class of retracts in $L^{p}$ with some applications to differential inclusion
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2002
VL - 22
IS - 2
SP - 213
EP - 224
LA - eng
KW - bounded domain; Laplace operator; Lipschitzean multifunction; retract; existence
UR - http://eudml.org/doc/271480
ER -

References

top
  1. [1] G. Bartuzel and A. Fryszkowski, On existence of solutions for inclusions Δu ∈ F(x,∇u), in: R. März, ed., Proc. of the Fourth Conf. on Numerical Treatment of Ordinary Differential Equations, pages 1-7, Sektion Mathematik der Humboldt Universität zu Berlin, Berlin, Sep. 1984. Zbl0571.35041
  2. [2] G. Bartuzel and A. Fryszkowski, Stability of the principal eigenvalue of the Schrödinger type problems for differential inclusions, Toplological Methods in Nonlinear Analysis 16 (1) (2000), 181-194. Zbl0980.34080
  3. [3] G. Bartuzel and A. Fryszkowski, A topological property of the solution set to the Schrödinger differential inclusions, Demomstratio Mathematicae 25 (3) (1995), 411-433. Zbl0886.47026
  4. [4] F.D. Blasi and G. Pianigiani, Solution sets of boundary value problems for nonconvex differential inclusion, Oct. 1992, preprint n 115. Zbl0785.34018
  5. [5] A. Bressan, A. Cellina and A. Fryszkowski, A class of absolute retracts in spaces of integrable functions, Proc. AMS 112 (1991), 413-418. Zbl0747.34014
  6. [6] A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values, Studia Math. 90 (1986) 163-174. 
  7. [7] N. Dunford and J.T. Schwartz, Linear Operators, Wiley, New York 1958. 
  8. [8] Y. Egorov and V. Kondratiev, On Spectral Theory of Elliptic Operators, Operator Theory, Advances and Applications, Vol. 89, Birkhäuser, Basel, Boston, Berlin 1996. Zbl0855.35001
  9. [9] A. Fryszkowski, Continuous selections for a class of nonconvex multivalued maps, Studia Math. 76 (1983), 163-174. Zbl0534.28003
  10. [10] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen mit Besonderer Berücksichtigung der Angewendungsgebiete, Springer, Berlin 1989. Zbl0691.35001
  11. [11] K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. 13 (1965) 397-403. Zbl0152.21403

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.