Existence and multiplicity of solutions for a p ( x ) -Kirchhoff type problem via variational techniques

A. Mokhtari; Toufik Moussaoui; D. O’Regan

Archivum Mathematicum (2015)

  • Volume: 051, Issue: 3, page 163-173
  • ISSN: 0044-8753

Abstract

top
This paper discusses the existence and multiplicity of solutions for a class of p ( x ) -Kirchhoff type problems with Dirichlet boundary data of the following form - a + b Ω 1 p ( x ) | u | p ( x ) d x div ( | u | p ( x ) - 2 u ) = f ( x , u ) , i n Ω u = 0 o n Ω , where Ω is a smooth open subset of N and p C ( Ω ¯ ) with N < p - = inf x Ω p ( x ) p + = sup x Ω p ( x ) < + , a , b are positive constants and f : Ω ¯ × is a continuous function. The proof is based on critical point theory and variable exponent Sobolev space theory.

How to cite

top

Mokhtari, A., Moussaoui, Toufik, and O’Regan, D.. "Existence and multiplicity of solutions for a $p(x)$-Kirchhoff type problem via variational techniques." Archivum Mathematicum 051.3 (2015): 163-173. <http://eudml.org/doc/271562>.

@article{Mokhtari2015,
abstract = {This paper discusses the existence and multiplicity of solutions for a class of $p(x)$-Kirchhoff type problems with Dirichlet boundary data of the following form \[ \{\left\rbrace \begin\{array\}\{ll\} -\Big (a+b\int \_\{\Omega \}\frac\{1\}\{p(x)\}|\nabla u|^\{p(x)\}\; dx\Big )\textrm \{div\}\big (|\nabla u|^\{p(x)-2 \} \nabla u\big )= f(x,u)\,, & in \quad \Omega \\[6pt] u=0 & on \quad \partial \Omega \,, \end\{array\}\right.\} \] where $\Omega $ is a smooth open subset of $\mathbb \{R\}^N$ and $p\in C(\overline\{\Omega \})$ with $N <p^-= \inf _\{x\in \Omega \} p(x)\le p^+= \sup _\{x\in \Omega \} p(x)<+\infty $, $a$, $b$ are positive constants and $f\colon \overline\{\Omega \}\times \mathbb \{R\}\rightarrow \mathbb \{R\}$ is a continuous function. The proof is based on critical point theory and variable exponent Sobolev space theory.},
author = {Mokhtari, A., Moussaoui, Toufik, O’Regan, D.},
journal = {Archivum Mathematicum},
keywords = {existence results; genus theory; nonlocal problems Kirchhoff equation; critical point theory},
language = {eng},
number = {3},
pages = {163-173},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Existence and multiplicity of solutions for a $p(x)$-Kirchhoff type problem via variational techniques},
url = {http://eudml.org/doc/271562},
volume = {051},
year = {2015},
}

TY - JOUR
AU - Mokhtari, A.
AU - Moussaoui, Toufik
AU - O’Regan, D.
TI - Existence and multiplicity of solutions for a $p(x)$-Kirchhoff type problem via variational techniques
JO - Archivum Mathematicum
PY - 2015
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 051
IS - 3
SP - 163
EP - 173
AB - This paper discusses the existence and multiplicity of solutions for a class of $p(x)$-Kirchhoff type problems with Dirichlet boundary data of the following form \[ {\left\rbrace \begin{array}{ll} -\Big (a+b\int _{\Omega }\frac{1}{p(x)}|\nabla u|^{p(x)}\; dx\Big )\textrm {div}\big (|\nabla u|^{p(x)-2 } \nabla u\big )= f(x,u)\,, & in \quad \Omega \\[6pt] u=0 & on \quad \partial \Omega \,, \end{array}\right.} \] where $\Omega $ is a smooth open subset of $\mathbb {R}^N$ and $p\in C(\overline{\Omega })$ with $N <p^-= \inf _{x\in \Omega } p(x)\le p^+= \sup _{x\in \Omega } p(x)<+\infty $, $a$, $b$ are positive constants and $f\colon \overline{\Omega }\times \mathbb {R}\rightarrow \mathbb {R}$ is a continuous function. The proof is based on critical point theory and variable exponent Sobolev space theory.
LA - eng
KW - existence results; genus theory; nonlocal problems Kirchhoff equation; critical point theory
UR - http://eudml.org/doc/271562
ER -

References

top
  1. Ambrosetti, A., Malchiodi, A., Nonlinear analysis and semilinear elliptic problems, Cambridge Stud. Adv. Math., vol. 14, Cambridge Univ. Press, 2007. (2007) Zbl1125.47052MR2292344
  2. Antontsev, S.N., Rodrigues, J.F., A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions, Nonlinear Anal. (2005), 515–545. (2005) MR2103951
  3. Antontsev, S.N., Rodrigues, J.F., On stationary thermo-rheological viscous flows, Ann. Univ. Ferrara Sez. VII (N.S.) 52 (2006), 19–36. (2006) Zbl1117.76004MR2246902
  4. Castro, A., Metodos variacionales y analisis functional no linear, X Colóquio Colombiano de Matematicas, 1980. (1980) 
  5. Clarke, D.C., 10.1512/iumj.1973.22.22008, Indiana Univ. Math. J. 22 (1972), 65–74. (1972) MR0296777DOI10.1512/iumj.1973.22.22008
  6. Corrêa, F.J.S.A., Figueiredo, G.M., 10.1017/S000497270003570X, Bull. Austral. Math. Soc. 74 (2006), 263–277. (2006) Zbl1108.45005MR2260494DOI10.1017/S000497270003570X
  7. Corrêa, F.J.S.A., Figueiredo, G.M., 10.1016/j.aml.2008.06.042, Appl. Math. Lett. 22 ('2009), 819–822. (2009) Zbl1171.35371MR2523587DOI10.1016/j.aml.2008.06.042
  8. Dai, G., Wei, J., 10.1016/j.na.2010.07.029, Nonlinear Anal. 73 (2010), 3420–3430. (2010) Zbl1201.35181MR2680035DOI10.1016/j.na.2010.07.029
  9. Diening, L., Harjulehto, P., Hast"o, P., Ružička, M., Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Math., vol. 2017, Springer, New York, 2011. (2011) MR2790542
  10. Fan, X.L., Zhao, D., On the spaces L p ( x ) and W m , p ( x ) , J. Math. Anal. Appl. 263 (2001), 424–446. (2001) MR1866056
  11. Kavian, O., ‘Introduction ‘a la théorie des points critiques et applications aux problémes elliptiques, Springer-Verlag, 1993. (1993) Zbl0797.58005
  12. Kirchhoff, G., Mechanik, Teubner, Leipzig, Germany, 1883. (1883) 
  13. Krasnoselskii, M.A., Topological methods in the theory of nonlinear integral equations, MacMillan, New York, 1964. (1964) MR0159197
  14. Peral, I., Multiplicity of solutions for the p-Laplacian, Second School of Nonlinear Functional Analysis and Applications to Differential Equations, ICTP, Trieste, 1997. (1997) 
  15. Rabinowitz, P. H., Minimax methods in critical point theory with applications to differential equations, Conference Board of the Mathematical Sciences, by the American Mathematical Society, Providence, Rhode Island, 1984. (1984) MR0845785
  16. Ružička, M., Electro-rheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2000. (2000) MR1788852
  17. Triebel, H., Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978. (1978) Zbl0387.46033MR0503903
  18. Zhikov, V.V., 10.1070/IM1987v029n01ABEH000958, Math. USSR Izv. 9 (1987), 33–66. (1987) Zbl0599.49031MR0864171DOI10.1070/IM1987v029n01ABEH000958

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.