Existence and multiplicity of solutions for a -Kirchhoff type problem via variational techniques
A. Mokhtari; Toufik Moussaoui; D. O’Regan
Archivum Mathematicum (2015)
- Volume: 051, Issue: 3, page 163-173
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topMokhtari, A., Moussaoui, Toufik, and O’Regan, D.. "Existence and multiplicity of solutions for a $p(x)$-Kirchhoff type problem via variational techniques." Archivum Mathematicum 051.3 (2015): 163-173. <http://eudml.org/doc/271562>.
@article{Mokhtari2015,
abstract = {This paper discusses the existence and multiplicity of solutions for a class of $p(x)$-Kirchhoff type problems with Dirichlet boundary data of the following form \[ \{\left\rbrace \begin\{array\}\{ll\} -\Big (a+b\int \_\{\Omega \}\frac\{1\}\{p(x)\}|\nabla u|^\{p(x)\}\; dx\Big )\textrm \{div\}\big (|\nabla u|^\{p(x)-2 \} \nabla u\big )= f(x,u)\,, & in \quad \Omega \\[6pt] u=0 & on \quad \partial \Omega \,, \end\{array\}\right.\} \]
where $\Omega $ is a smooth open subset of $\mathbb \{R\}^N$ and $p\in C(\overline\{\Omega \})$ with $N <p^-= \inf _\{x\in \Omega \} p(x)\le p^+= \sup _\{x\in \Omega \} p(x)<+\infty $, $a$, $b$ are positive constants and $f\colon \overline\{\Omega \}\times \mathbb \{R\}\rightarrow \mathbb \{R\}$ is a continuous function. The proof is based on critical point theory and variable exponent Sobolev space theory.},
author = {Mokhtari, A., Moussaoui, Toufik, O’Regan, D.},
journal = {Archivum Mathematicum},
keywords = {existence results; genus theory; nonlocal problems Kirchhoff equation; critical point theory},
language = {eng},
number = {3},
pages = {163-173},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Existence and multiplicity of solutions for a $p(x)$-Kirchhoff type problem via variational techniques},
url = {http://eudml.org/doc/271562},
volume = {051},
year = {2015},
}
TY - JOUR
AU - Mokhtari, A.
AU - Moussaoui, Toufik
AU - O’Regan, D.
TI - Existence and multiplicity of solutions for a $p(x)$-Kirchhoff type problem via variational techniques
JO - Archivum Mathematicum
PY - 2015
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 051
IS - 3
SP - 163
EP - 173
AB - This paper discusses the existence and multiplicity of solutions for a class of $p(x)$-Kirchhoff type problems with Dirichlet boundary data of the following form \[ {\left\rbrace \begin{array}{ll} -\Big (a+b\int _{\Omega }\frac{1}{p(x)}|\nabla u|^{p(x)}\; dx\Big )\textrm {div}\big (|\nabla u|^{p(x)-2 } \nabla u\big )= f(x,u)\,, & in \quad \Omega \\[6pt] u=0 & on \quad \partial \Omega \,, \end{array}\right.} \]
where $\Omega $ is a smooth open subset of $\mathbb {R}^N$ and $p\in C(\overline{\Omega })$ with $N <p^-= \inf _{x\in \Omega } p(x)\le p^+= \sup _{x\in \Omega } p(x)<+\infty $, $a$, $b$ are positive constants and $f\colon \overline{\Omega }\times \mathbb {R}\rightarrow \mathbb {R}$ is a continuous function. The proof is based on critical point theory and variable exponent Sobolev space theory.
LA - eng
KW - existence results; genus theory; nonlocal problems Kirchhoff equation; critical point theory
UR - http://eudml.org/doc/271562
ER -
References
top- Ambrosetti, A., Malchiodi, A., Nonlinear analysis and semilinear elliptic problems, Cambridge Stud. Adv. Math., vol. 14, Cambridge Univ. Press, 2007. (2007) Zbl1125.47052MR2292344
- Antontsev, S.N., Rodrigues, J.F., A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions, Nonlinear Anal. (2005), 515–545. (2005) MR2103951
- Antontsev, S.N., Rodrigues, J.F., On stationary thermo-rheological viscous flows, Ann. Univ. Ferrara Sez. VII (N.S.) 52 (2006), 19–36. (2006) Zbl1117.76004MR2246902
- Castro, A., Metodos variacionales y analisis functional no linear, X Colóquio Colombiano de Matematicas, 1980. (1980)
- Clarke, D.C., 10.1512/iumj.1973.22.22008, Indiana Univ. Math. J. 22 (1972), 65–74. (1972) MR0296777DOI10.1512/iumj.1973.22.22008
- Corrêa, F.J.S.A., Figueiredo, G.M., 10.1017/S000497270003570X, Bull. Austral. Math. Soc. 74 (2006), 263–277. (2006) Zbl1108.45005MR2260494DOI10.1017/S000497270003570X
- Corrêa, F.J.S.A., Figueiredo, G.M., 10.1016/j.aml.2008.06.042, Appl. Math. Lett. 22 ('2009), 819–822. (2009) Zbl1171.35371MR2523587DOI10.1016/j.aml.2008.06.042
- Dai, G., Wei, J., 10.1016/j.na.2010.07.029, Nonlinear Anal. 73 (2010), 3420–3430. (2010) Zbl1201.35181MR2680035DOI10.1016/j.na.2010.07.029
- Diening, L., Harjulehto, P., Hast"o, P., Ružička, M., Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Math., vol. 2017, Springer, New York, 2011. (2011) MR2790542
- Fan, X.L., Zhao, D., On the spaces and , J. Math. Anal. Appl. 263 (2001), 424–446. (2001) MR1866056
- Kavian, O., ‘Introduction ‘a la théorie des points critiques et applications aux problémes elliptiques, Springer-Verlag, 1993. (1993) Zbl0797.58005
- Kirchhoff, G., Mechanik, Teubner, Leipzig, Germany, 1883. (1883)
- Krasnoselskii, M.A., Topological methods in the theory of nonlinear integral equations, MacMillan, New York, 1964. (1964) MR0159197
- Peral, I., Multiplicity of solutions for the p-Laplacian, Second School of Nonlinear Functional Analysis and Applications to Differential Equations, ICTP, Trieste, 1997. (1997)
- Rabinowitz, P. H., Minimax methods in critical point theory with applications to differential equations, Conference Board of the Mathematical Sciences, by the American Mathematical Society, Providence, Rhode Island, 1984. (1984) MR0845785
- Ružička, M., Electro-rheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2000. (2000) MR1788852
- Triebel, H., Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978. (1978) Zbl0387.46033MR0503903
- Zhikov, V.V., 10.1070/IM1987v029n01ABEH000958, Math. USSR Izv. 9 (1987), 33–66. (1987) Zbl0599.49031MR0864171DOI10.1070/IM1987v029n01ABEH000958
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.