On the range-kernel orthogonality of elementary operators
Mathematica Bohemica (2015)
- Volume: 140, Issue: 3, page 261-269
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topBouali, Said, and Bouhafsi, Youssef. "On the range-kernel orthogonality of elementary operators." Mathematica Bohemica 140.3 (2015): 261-269. <http://eudml.org/doc/271582>.
@article{Bouali2015,
abstract = {Let $L(H)$ denote the algebra of operators on a complex infinite dimensional Hilbert space $H$. For $A, B\in L(H)$, the generalized derivation $\delta _\{A,B\}$ and the elementary operator $\Delta _\{A,B\}$ are defined by $\delta _\{A,B\}(X)=AX-XB$ and $\Delta _\{A,B\}(X)=AXB-X$ for all $X\in L(H)$. In this paper, we exhibit pairs $(A,B)$ of operators such that the range-kernel orthogonality of $\delta _\{A,B\}$ holds for the usual operator norm. We generalize some recent results. We also establish some theorems on the orthogonality of the range and the kernel of $\Delta _\{A,B\}$ with respect to the wider class of unitarily invariant norms on $L(H)$.},
author = {Bouali, Said, Bouhafsi, Youssef},
journal = {Mathematica Bohemica},
keywords = {derivation; elementary operator; orthogonality; unitarily invariant norm; cyclic subnormal operator; Fuglede-Putnam property},
language = {eng},
number = {3},
pages = {261-269},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the range-kernel orthogonality of elementary operators},
url = {http://eudml.org/doc/271582},
volume = {140},
year = {2015},
}
TY - JOUR
AU - Bouali, Said
AU - Bouhafsi, Youssef
TI - On the range-kernel orthogonality of elementary operators
JO - Mathematica Bohemica
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 140
IS - 3
SP - 261
EP - 269
AB - Let $L(H)$ denote the algebra of operators on a complex infinite dimensional Hilbert space $H$. For $A, B\in L(H)$, the generalized derivation $\delta _{A,B}$ and the elementary operator $\Delta _{A,B}$ are defined by $\delta _{A,B}(X)=AX-XB$ and $\Delta _{A,B}(X)=AXB-X$ for all $X\in L(H)$. In this paper, we exhibit pairs $(A,B)$ of operators such that the range-kernel orthogonality of $\delta _{A,B}$ holds for the usual operator norm. We generalize some recent results. We also establish some theorems on the orthogonality of the range and the kernel of $\Delta _{A,B}$ with respect to the wider class of unitarily invariant norms on $L(H)$.
LA - eng
KW - derivation; elementary operator; orthogonality; unitarily invariant norm; cyclic subnormal operator; Fuglede-Putnam property
UR - http://eudml.org/doc/271582
ER -
References
top- Anderson, J., 10.1090/S0002-9939-1973-0312313-6, Proc. Am. Math. Soc. 38 (1973), 135-140. (1973) Zbl0255.47036MR0312313DOI10.1090/S0002-9939-1973-0312313-6
- Berger, C. A., Shaw, B. I., Selfcommutators of multicyclic hyponormal operators are always trace class, Bull. Am. Math. Soc. 79 (1974), 1193-1199. (1974) Zbl0283.47018MR0374972
- Bouali, S., Bouhafsi, Y., On the range kernel orthogonality and -symmetric operators, Math. Inequal. Appl. 9 (2006), 511-519. (2006) Zbl1112.47026MR2242781
- Delai, M. B., Bouali, S., Cherki, S., A remark on the orthogonality of the image to the kernel of a generalized derivation, Proc. Am. Math. Soc. 126 French (1998), 167-171. (1998) MR1416081
- Duggal, B. P., 10.1090/S0002-9939-05-08337-1, Proc. Am. Math. Soc. 134 (2006), 1727-1734. (2006) Zbl1082.47031MR2204285DOI10.1090/S0002-9939-05-08337-1
- Duggal, B. P., 10.1090/S0002-9939-98-04326-3, Proc. Am. Math. Soc. 126 (1998), 2047-2052. (1998) Zbl0894.47003MR1451795DOI10.1090/S0002-9939-98-04326-3
- Gohberg, I. C., Kreĭn, M. G., 10.1090/mmono/018/01, Translations of Mathematical Monographs 18 American Mathematical Society, Providence (1969), translated from the Russian, Nauka, Moskva, 1965. (1969) Zbl0181.13504MR0246142DOI10.1090/mmono/018/01
- Kittaneh, F., 10.1090/S0002-9939-1995-1242091-2, Proc. Am. Math. Soc. 123 (1995), 1779-1785. (1995) Zbl0831.47036MR1242091DOI10.1090/S0002-9939-1995-1242091-2
- Tong, Y., Kernels of generalized derivations, Acta Sci. Math. 54 (1990), 159-169. (1990) Zbl0731.47038MR1073431
- Turnšek, A., 10.1007/s006050170039, Monatsh. Math. 132 (2001), 349-354. (2001) MR1844072DOI10.1007/s006050170039
- Turnšek, A., Elementary operators and orthogonality, Linear Algebra Appl. 317 (2000), 207-216. (2000) Zbl1084.47510MR1782211
- Yoshino, T., 10.2748/tmj/1178243033, Tôhoku Math. J. II. Ser. 21 (1969), 47-55. (1969) Zbl0192.47801MR0246145DOI10.2748/tmj/1178243033
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.