Existence of solutions and approximate controllability of impulsive fractional stochastic differential systems with infinite delay and Poisson jumps
Chinnathambi Rajivganthi; Krishnan Thiagu; Palanisamy Muthukumar; Pagavathigounder Balasubramaniam
Applications of Mathematics (2015)
- Volume: 60, Issue: 4, page 395-419
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topRajivganthi, Chinnathambi, et al. "Existence of solutions and approximate controllability of impulsive fractional stochastic differential systems with infinite delay and Poisson jumps." Applications of Mathematics 60.4 (2015): 395-419. <http://eudml.org/doc/271586>.
@article{Rajivganthi2015,
abstract = {The paper is motivated by the study of interesting models from economics and the natural sciences where the underlying randomness contains jumps. Stochastic differential equations with Poisson jumps have become very popular in modeling the phenomena arising in the field of financial mathematics, where the jump processes are widely used to describe the asset and commodity price dynamics. This paper addresses the issue of approximate controllability of impulsive fractional stochastic differential systems with infinite delay and Poisson jumps in Hilbert spaces under the assumption that the corresponding linear system is approximately controllable. The existence of mild solutions of the fractional dynamical system is proved by using the Banach contraction principle and Krasnoselskii's fixed-point theorem. More precisely, sufficient conditions for the controllability results are established by using fractional calculations, sectorial operator theory and stochastic analysis techniques. Finally, examples are provided to illustrate the applications of the main results.},
author = {Rajivganthi, Chinnathambi, Thiagu, Krishnan, Muthukumar, Palanisamy, Balasubramaniam, Pagavathigounder},
journal = {Applications of Mathematics},
keywords = {approximate controllability; fixed-point theorem; fractional stochastic differential system; Hilbert space; Poisson jumps; approximate controllability; fixed-point theorem; fractional stochastic differential system; Hilbert space; Poisson jumps},
language = {eng},
number = {4},
pages = {395-419},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence of solutions and approximate controllability of impulsive fractional stochastic differential systems with infinite delay and Poisson jumps},
url = {http://eudml.org/doc/271586},
volume = {60},
year = {2015},
}
TY - JOUR
AU - Rajivganthi, Chinnathambi
AU - Thiagu, Krishnan
AU - Muthukumar, Palanisamy
AU - Balasubramaniam, Pagavathigounder
TI - Existence of solutions and approximate controllability of impulsive fractional stochastic differential systems with infinite delay and Poisson jumps
JO - Applications of Mathematics
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 4
SP - 395
EP - 419
AB - The paper is motivated by the study of interesting models from economics and the natural sciences where the underlying randomness contains jumps. Stochastic differential equations with Poisson jumps have become very popular in modeling the phenomena arising in the field of financial mathematics, where the jump processes are widely used to describe the asset and commodity price dynamics. This paper addresses the issue of approximate controllability of impulsive fractional stochastic differential systems with infinite delay and Poisson jumps in Hilbert spaces under the assumption that the corresponding linear system is approximately controllable. The existence of mild solutions of the fractional dynamical system is proved by using the Banach contraction principle and Krasnoselskii's fixed-point theorem. More precisely, sufficient conditions for the controllability results are established by using fractional calculations, sectorial operator theory and stochastic analysis techniques. Finally, examples are provided to illustrate the applications of the main results.
LA - eng
KW - approximate controllability; fixed-point theorem; fractional stochastic differential system; Hilbert space; Poisson jumps; approximate controllability; fixed-point theorem; fractional stochastic differential system; Hilbert space; Poisson jumps
UR - http://eudml.org/doc/271586
ER -
References
top- Balasubramaniam, P., Vembarasan, V., Senthilkumar, T., 10.1080/01630563.2013.811420, Numer. Funct. Anal. Optim. 35 (2014), 177-197. (2014) Zbl1288.34074MR3175636DOI10.1080/01630563.2013.811420
- Caputo, M., Elasticità e dissipazione, Zanichelli Publisher, Bologna Italian (1969). (1969)
- Cont, R., Tankov, P., Financial Modelling with Jump Processes, Chapman & Hall/CRC Financial Mathematics Series Chapman & Hall/CRC, Boca Raton (2004). (2004) Zbl1052.91043MR2042661
- Cui, J., Yan, L., Existence result for fractional neutral stochastic integro-differential equations with infinite delay, J. Phys. A, Math. Theor. 44 (2011), Article ID 335201, 16 pages. (2011) Zbl1232.34107MR2822114
- Cui, J., Yan, L., 10.1016/j.amc.2011.12.045, Appl. Math. Comput. 218 (2012), 6776-6784. (2012) Zbl1248.34120MR2880333DOI10.1016/j.amc.2011.12.045
- Prato, G. Da, Zabczyk, J., Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and Its Applications 44 Cambridge University Press, Cambridge (1992). (1992) Zbl0761.60052MR1207136
- Dabas, J., Chauhan, A., Kumar, M., Existence of the mild solutions for impulsive fractional equations with infinite delay, Int. J. Differ. Equ. 2011 (2011), Article ID 793023, 20 pages. (2011) Zbl1239.34094MR2843512
- El-Borai, M. M., El-Nadi, K. E.-S., Fouad, H. A., 10.1016/j.camwa.2009.05.004, Comput. Math. Appl. 59 (2010), 1165-1170. (2010) Zbl1189.60117MR2579480DOI10.1016/j.camwa.2009.05.004
- Hasse, M., The Functional Calculus for Sectorial Operators, Operator theory: Advances and Applications. Vol. 196 Birkhäuser, Basel (2006). (2006) MR2244037
- Hausenblas, E., Marchis, I., 10.1007/s10543-006-0099-3, BIT 46 (2006), 773-811. (2006) Zbl1112.65004MR2285208DOI10.1007/s10543-006-0099-3
- Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies 204 Elsevier, Amsterdam (2006). (2006) Zbl1092.45003MR2218073
- Kolmanovskii, V., Myshkis, A., Applied Theory of Functional Differential Equations, Mathematics and Its Applications. Soviet Series 85 Kluwer Academic Publishers, Dordrecht (1992). (1992) MR1256486
- Lakshmikantham, V., Bainov, D. D., Simeonov, P. S., Theory of Impulsive Differential Equations, Series in Modern Applied Mathematics 6 World Scientific, Singapore (1989). (1989) Zbl0719.34002MR1082551
- Liu, J., Yan, L., Cang, Y., 10.1016/j.na.2012.06.012, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 6060-6070. (2012) Zbl1246.35215MR2956125DOI10.1016/j.na.2012.06.012
- Long, H., Hu, J., Li, Y., Approximate controllability of stochastic PDE with infinite delays driven by Poisson jumps, IEEE International Conference on Information Science and Technology. Wuhan, Hubei, China (2012), 23-25. (2012)
- Mahmudov, N. I., 10.1137/S0363012901391688, SIAM J. Control Optim. 42 (2003), 1604-1622. (2003) Zbl1084.93006MR2046377DOI10.1137/S0363012901391688
- Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication John Wiley & Sons, New York (1993). (1993) Zbl0789.26002MR1219954
- Muthukumar, P., Rajivganthi, C., 10.11650/tjm.18.2014.3885, Taiwanese J. Math. 18 (2014), 1721-1738. (2014) MR3284028DOI10.11650/tjm.18.2014.3885
- Ren, Y., Zhou, Q., Chen, L., 10.1007/s10957-010-9792-0, J. Optim. Theory Appl. 149 (2011), 315-331. (2011) Zbl1241.34089MR2787714DOI10.1007/s10957-010-9792-0
- Sakthivel, R., Ganesh, R., Ren, Y., Anthoni, S. M., 10.1016/j.cnsns.2013.05.015, Commun. Nonlinear Sci. Numer. Simul. 18 (2013), 3498-3508. (2013) MR3081379DOI10.1016/j.cnsns.2013.05.015
- Sakthivel, R., Ren, Y., 10.1016/S0034-4877(12)60003-2, Rep. Math. Phys. 68 (2011), 163-174. (2011) Zbl1244.93028MR2900843DOI10.1016/S0034-4877(12)60003-2
- Sakthivel, R., Revathi, P., Ren, Y., 10.1016/j.na.2012.10.009, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 81 (2013), 70-86. (2013) Zbl1261.34063MR3016441DOI10.1016/j.na.2012.10.009
- Sakthivel, R., Suganya, S., Anthoni, S. M., 10.1016/j.camwa.2011.11.024, Comput. Math. Appl. 63 (2012), 660-668. (2012) Zbl1238.93099MR2871665DOI10.1016/j.camwa.2011.11.024
- Shu, X.-B., Wang, Q., 10.1016/j.camwa.2012.04.006, Comput. Math. Appl. 64 (2012), 2100-2110. (2012) Zbl1268.34155MR2960829DOI10.1016/j.camwa.2012.04.006
- Sukavanam, N., Kumar, S., 10.1007/s10957-011-9905-4, J. Optim. Theory Appl. 151 (2011), 373-384. (2011) Zbl1251.93039MR2852407DOI10.1007/s10957-011-9905-4
- Tai, Z., Wang, X., 10.1016/j.aml.2009.06.017, Appl. Math. Lett. 22 (2009), 1760-1765. (2009) Zbl1181.34078MR2560992DOI10.1016/j.aml.2009.06.017
- Taniguchi, T., Luo, J., 10.1142/S0219493709002646, Stoch. Dyn. 9 (2009), 217-229. (2009) Zbl1181.60102MR2531628DOI10.1142/S0219493709002646
- Triggiani, R., 10.1137/0315028, SIAM J. Control Optim. 15 (1977), 407-411. (1977) Zbl0354.93014MR0435991DOI10.1137/0315028
- Zhao, H., 10.1016/j.spl.2009.08.006, Stat. Probab. Lett. 79 (2009), 2367-2373. (2009) Zbl1182.60018MR2556370DOI10.1016/j.spl.2009.08.006
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.