-supercontinuous functions
Davinder Singh; Brij Kishore Tyagi; Jeetendra Aggarwal; Jogendra K. Kohli
Mathematica Bohemica (2015)
- Volume: 140, Issue: 3, page 329-343
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topSingh, Davinder, et al. "$R_z$-supercontinuous functions." Mathematica Bohemica 140.3 (2015): 329-343. <http://eudml.org/doc/271592>.
@article{Singh2015,
abstract = {A new class of functions called “$R_\{z\}$-supercontinuous functions” is introduced. Their basic properties are studied and their place in the hierarchy of strong variants of continuity that already exist in the literature is elaborated. The class of $R_\{z\}$-supercontinuous functions properly includes the class of $R_\{\rm cl\}$-supercontinuous functions, Tyagi, Kohli, Singh (2013), which in its turn contains the class of $\rm cl$-supercontinuous ($\equiv $ clopen continuous) functions, Singh (2007), Reilly, Vamanamurthy (1983), and is strictly contained in the class of $R_\{\delta \}$-supercontinuous, Kohli, Tyagi, Singh, Aggarwal (2014), which in its turn is properly contained in the class of $R$-supercontinuous functions, Kohli, Singh, Aggarwal (2010).},
author = {Singh, Davinder, Tyagi, Brij Kishore, Aggarwal, Jeetendra, Kohli, Jogendra K.},
journal = {Mathematica Bohemica},
keywords = {$z$-supercontinuous function; $F$-supercontinuous function; $\rm cl$-supercontinuous function; $R_z$-supercontinuous function; $R$-supercontinuous function; $r_z$-open set; $r_z$-closed set; $z$-embedded set; $R_z$-space; functionally Hausdorff space},
language = {eng},
number = {3},
pages = {329-343},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$R_z$-supercontinuous functions},
url = {http://eudml.org/doc/271592},
volume = {140},
year = {2015},
}
TY - JOUR
AU - Singh, Davinder
AU - Tyagi, Brij Kishore
AU - Aggarwal, Jeetendra
AU - Kohli, Jogendra K.
TI - $R_z$-supercontinuous functions
JO - Mathematica Bohemica
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 140
IS - 3
SP - 329
EP - 343
AB - A new class of functions called “$R_{z}$-supercontinuous functions” is introduced. Their basic properties are studied and their place in the hierarchy of strong variants of continuity that already exist in the literature is elaborated. The class of $R_{z}$-supercontinuous functions properly includes the class of $R_{\rm cl}$-supercontinuous functions, Tyagi, Kohli, Singh (2013), which in its turn contains the class of $\rm cl$-supercontinuous ($\equiv $ clopen continuous) functions, Singh (2007), Reilly, Vamanamurthy (1983), and is strictly contained in the class of $R_{\delta }$-supercontinuous, Kohli, Tyagi, Singh, Aggarwal (2014), which in its turn is properly contained in the class of $R$-supercontinuous functions, Kohli, Singh, Aggarwal (2010).
LA - eng
KW - $z$-supercontinuous function; $F$-supercontinuous function; $\rm cl$-supercontinuous function; $R_z$-supercontinuous function; $R$-supercontinuous function; $r_z$-open set; $r_z$-closed set; $z$-embedded set; $R_z$-space; functionally Hausdorff space
UR - http://eudml.org/doc/271592
ER -
References
top- Alò, R. A., Shapiro, H. L., Normal Topological Spaces, Cambridge Tracts in Mathematics 65 Cambridge University Press, Cambridge (1974). (1974) Zbl0282.54005MR2483377
- Aull, C. E., 10.1016/1385-7258(76)90066-4, Nederl. Akad. Wet., Proc., Indag. Math. 38, Ser. A 79 (1976), 281-288. (1976) Zbl0352.54006MR0428268DOI10.1016/1385-7258(76)90066-4
- Beckhoff, F., 10.1090/S0002-9939-97-03831-8, Proc. Am. Math. Soc. 125 (1997), 2859-2866. (1997) Zbl0883.46032MR1389504DOI10.1090/S0002-9939-97-03831-8
- Beckhoff, F., 10.4064/sm-118-1-63-75, Stud. Math. 118 (1996), 63-75. (1996) Zbl0854.46045MR1373625DOI10.4064/sm-118-1-63-75
- Beckhoff, F., 10.4064/sm-115-2-189-205, Stud. Math. 115 (1995), 189-205. (1995) Zbl0836.46038MR1347441DOI10.4064/sm-115-2-189-205
- Blair, R. L., Hager, A. W., 10.1007/BF01189255, Math. Z. 136 (1974), 41-52. (1974) Zbl0264.54011MR0385793DOI10.1007/BF01189255
- Gauld, D. B., Mršević, M., Reilly, I. L., Vamanamurthy, M. K., Continuity properties of functions, Topology, Theory and Applications, ed. Á. Császár, 5th Colloq., Eger, Hungary, 1983, Colloq. Math. Soc. János Bolyai 41 North-Holland, Amsterdam; János Bolyai Mathematical Society, Budapest (1985), 311-322. (1985) Zbl0605.54011MR0863913
- Gleason, A. M., 10.1215/ijm/1255644959, Ill. J. Math. 7 (1963), 521-531. (1963) Zbl0117.16101MR0164315DOI10.1215/ijm/1255644959
- Kohli, J. K., Change of topology, characterizations and product theorems for semilocally -spaces, Houston J. Math. 17 (1991), 335-350. (1991) Zbl0781.54007MR1126598
- Kohli, J. K., A framework including the theories of continuous functions and certain noncontinuous functions, Note Mat. 10 (1990), 37-45. (1990) MR1165488
- Kohli, J. K., 10.1017/S1446788700029906, J. Aust. Math. Soc., Ser. A 48 (1990), 347-358. (1990) MR1050622DOI10.1017/S1446788700029906
- Kohli, J. K., 10.1017/S0004972700017858, Bull. Aust. Math. Soc. 41 (1990), 57-74. (1990) MR1043967DOI10.1017/S0004972700017858
- Kohli, J. K., 10.4153/CJM-1984-045-8, Can. J. Math. 36 (1984), 783-794. (1984) Zbl0553.54006MR0762741DOI10.4153/CJM-1984-045-8
- Kohli, J. K., 10.1090/S0002-9939-1978-0493941-9, Proc. Am. Math. Soc. 72 (1978), 175-181. (1978) Zbl0408.54003MR0493941DOI10.1090/S0002-9939-1978-0493941-9
- Kohli, J. K., Kumar, R., -supercontinuous functions, Indian J. Pure Appl. Math. 33 (2002), 1097-1108. (2002) Zbl1010.54012MR1921976
- Kohli, J. K., Singh, D., -supercontinuous functions, Indian J. Pure Appl. Math. 34 (2003), 1089-1100. (2003) Zbl1036.54003MR2001098
- Kohli, J. K., Singh, D., -supercontinuous functions, Indian J. Pure Appl. Math. 32 (2001), 227-235. (2001) Zbl0977.54011MR1820863
- Kohli, J. K., Singh, D., Aggarwal, J., -supercontinuous functions, Demonstr. Math. (electronic only) 43 (2010), 703-723. (2010) Zbl1217.54016MR2683367
- Kohli, J. K., Singh, D., Aggarwal, J., 10.4995/agt.2009.1788, Appl. Gen. Topol. (electronic only) 10 (2009), 69-83. (2009) Zbl1189.54013MR2602603DOI10.4995/agt.2009.1788
- Kohli, J. K., Singh, D., Kumar, R., Some properties of strongly -continuous functions, Bull. Calcutta Math. Soc. 100 (2008), 185-196. (2008) MR2437543
- Kohli, J. K., Tyagi, B. K., Singh, D., Aggarwal, J., -supercontinuous functions, Demonstr. Math. (electronic only) 47 (2014), 433-448. (2014) Zbl1300.54022MR3217739
- Levine, N., 10.2307/2309695, Am. Math. Mon. 67 (1960), 269. (1960) Zbl0156.43305DOI10.2307/2309695
- Long, P. E., Herrington, L. L., Strongly -continuous functions, J. Korean Math. Soc. 18 (1981), 21-28. (1981) Zbl0478.54006MR0635376
- Mack, J., 10.1090/S0002-9947-1970-0259856-3, Trans. Am. Math. Soc. 148 (1970), 265-272. (1970) Zbl0209.26904MR0259856DOI10.1090/S0002-9947-1970-0259856-3
- Munshi, B. M., Bassan, D. S., Super-continuous mappings, Indian J. Pure Appl. Math. 13 (1982), 229-236. (1982) Zbl0483.54007MR0651833
- Noiri, T., Supercontinuity and some strong forms of continuity, Indian J. Pure Appl. Math. 15 (1984), 241-250. (1984) MR0737147
- Noiri, T., On -continuous functions, J. Korean Math. Soc. 16 (1980), 161-166. (1980) Zbl0435.54010MR0577894
- Reilly, I. L., Vamanamurthy, M. K., On super-continuous mappings, Indian J. Pure Appl. Math. 14 (1983), 767-772. (1983) Zbl0509.54007MR0717860
- Singal, M. K., Nimse, S. B., -continuous mappings, Math. Stud. 66 (1997), 193-210. (1997) Zbl1194.54020MR1626266
- Singh, D., 10.4995/agt.2007.1899, Appl. Gen. Topol. 8 (2007), 293-300. (2007) MR2398521DOI10.4995/agt.2007.1899
- Singh, D., -supercontinuous functions, Bull. Calcutta Math. Soc. 94 (2002), 67-76. (2002) Zbl1012.54016MR1928464
- Singh, D., Kohli, J. K., Separation axioms between functionally regular spaces and -spaces, Submitted to Sci. Stud. Res., Ser. Math. Inform.
- Somerset, D. W. B., 10.1112/S0024611599001677, Proc. Lond. Math. Soc. (3) 78 (1999), 369-400. (1999) Zbl1027.46058MR1665247DOI10.1112/S0024611599001677
- L. A. Steen, J. A. Seebach, Jr., Counterexamples in Topology, Springer, New York (1978). (1978) Zbl0386.54001MR0507446
- Tyagi, B. K., Kohli, J. K., Singh, D., -supercontinuous functions, Demonstr. Math. (electronic only) 46 (2013), 229-244. (2013) Zbl1272.54015MR3075511
- Est, W. T. van, Freudenthal, H., 10.1016/S1385-7258(51)50051-3, Nederl. Akad. Wet., Proc., Indagationes Math. 13, Ser. A 54 German (1951), 359-368. (1951) MR0046033DOI10.1016/S1385-7258(51)50051-3
- Veličko, N. V., -closed topological spaces, Transl., Ser. 2, Am. Math. Soc. 78 (1968), 103-118 translation from Russian original, Mat. Sb. (N.S.), 70 98-112 (1966). (1966) MR0198418
- G. S. Young, Jr., 10.2307/2371828, Am. J. Math. 68 (1946), 479-494. (1946) Zbl0060.40204MR0016663DOI10.2307/2371828
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.