Stability, Boundedness and Existenceof Periodic Solutions to Certain Third Order Nonlinear Differential Equations

A. T. ADEMOLA; M. O. OGUNDIRAN; P. O. ARAWOMO

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2015)

  • Volume: 54, Issue: 1, page 5-18
  • ISSN: 0231-9721

Abstract

top
In this paper, criteria are established for uniform stability, uniform ultimate boundedness and existence of periodic solutions for third order nonlinear ordinary differential equations. In the investigation Lyapunov’s second method is used by constructing a complete Lyapunov function to obtain our results. The results obtained in this investigation complement and extend many existing results in the literature.

How to cite

top

ADEMOLA, A. T., OGUNDIRAN, M. O., and ARAWOMO, P. O.. "Stability, Boundedness and Existenceof Periodic Solutions to Certain Third Order Nonlinear Differential Equations." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 54.1 (2015): 5-18. <http://eudml.org/doc/271596>.

@article{ADEMOLA2015,
abstract = {In this paper, criteria are established for uniform stability, uniform ultimate boundedness and existence of periodic solutions for third order nonlinear ordinary differential equations. In the investigation Lyapunov’s second method is used by constructing a complete Lyapunov function to obtain our results. The results obtained in this investigation complement and extend many existing results in the literature.},
author = {ADEMOLA, A. T., OGUNDIRAN, M. O., ARAWOMO, P. O.},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Third order; nonlinear differential equation; uniform stability; uniform ultimate boundedness; periodic solutions},
language = {eng},
number = {1},
pages = {5-18},
publisher = {Palacký University Olomouc},
title = {Stability, Boundedness and Existenceof Periodic Solutions to Certain Third Order Nonlinear Differential Equations},
url = {http://eudml.org/doc/271596},
volume = {54},
year = {2015},
}

TY - JOUR
AU - ADEMOLA, A. T.
AU - OGUNDIRAN, M. O.
AU - ARAWOMO, P. O.
TI - Stability, Boundedness and Existenceof Periodic Solutions to Certain Third Order Nonlinear Differential Equations
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2015
PB - Palacký University Olomouc
VL - 54
IS - 1
SP - 5
EP - 18
AB - In this paper, criteria are established for uniform stability, uniform ultimate boundedness and existence of periodic solutions for third order nonlinear ordinary differential equations. In the investigation Lyapunov’s second method is used by constructing a complete Lyapunov function to obtain our results. The results obtained in this investigation complement and extend many existing results in the literature.
LA - eng
KW - Third order; nonlinear differential equation; uniform stability; uniform ultimate boundedness; periodic solutions
UR - http://eudml.org/doc/271596
ER -

References

top
  1. Ademola, A. T., Arawomo, P. O., On the asymptotic behaviour of solutions of certain differential equations of the third order, Proyecciones Journal of Mathematics 33, 1 (2014), 111–132. (2014) Zbl1302.34076MR3162791
  2. Ademola, A. T., Arawomo, P. O., Generalization of some qualitative behaviour of solutions of third order nonlinear differential equations, Differential Equations and Control Processes N 1 (2012), 97–113. (2012) MR2977146
  3. Ademola, A. T., Arawomo, P. O., Asymptotic behaviour of solutions of third order nonlinear differential equations, Acta Univ. Sapientiae, Mathematica 3, 2 (2011), 197–211. (2011) Zbl1260.34100MR2915835
  4. Ademola, A. T., Arawomo, P. O., 10.1007/s13370-011-0034-x, Afr. Mat. 23 (2012), 261–271. (2012) Zbl1266.34051MR2958973DOI10.1007/s13370-011-0034-x
  5. Ademola, A. T., Arawomo, P. O., Boundedness and stability of solutions of some nonlinear differential equations of the third-order, The Pacific Journal of Science and Technology 10, 2 (2009), 187–193. (2009) MR2881138
  6. Ademola, A. T., Arawomo, P. O., Stability and ultimate boundedness of solutions to certain third-order differential equations, Applied Mathematics E-Notes 10 (2010), 61–69. (2010) Zbl1194.34103MR2606838
  7. Ademola, A. T., Arawomo, P. O., Stability and uniform ultimate boundedness of solutions of a third-order differential equation, International Journal of Applied Mathematics 23, 1 (2010), 11–22. (2010) Zbl1201.34054MR2643291
  8. Ademola, A. T., Arawomo, P. O., Stability and uniform ultimate boundedness of solutions of some third order differential equations, Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 27 (2011), 51–59. (2011) Zbl1240.34259MR2813591
  9. Ademola, A. T., Arawomo, P. O., Stability, boundedness and asymptotic behaviour of solutions of certain nonlinear differential equations of the third order, Kragujevac J. Math. 35, 3 (2011), 431–445. (2011) Zbl1265.34191MR2881138
  10. Ademola, A. T., Ogundiran, M. O., Arawomo, P. O., Adesina, O. A., 10.1016/j.amc.2010.04.022, Appl. Math. Comput. 216 (2010), 3044–3049. (2010) MR2653118DOI10.1016/j.amc.2010.04.022
  11. Afuwape, A. U., Adesina, O. A., On the bounds for mean-values of solutions to certain third-order nonlinear differential equations, Fasciculi Mathematici 36 (2005), 5–14. (2005) Zbl1127.34019MR2223637
  12. Andres, J., Boundedness results for solutions of the equation x + a x ¨ + g ( x ) x ˙ + h ( x ) = p ( t ) without the hypothesis h ( x ) x 0 for | x | > R , Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 80, 8 (1986), 533–539. (1986) MR0976947
  13. Antoisewicz, H. A., 10.1112/jlms/s1-30.1.64, J. London Math. Soc. 30 (1955), 64–67. (1955) DOI10.1112/jlms/s1-30.1.64
  14. Babaev, E. V., Hefferlin, R., Concept of chemical periodicity: from Mendeleev Table to Molecular Hyper-periodicity patterns, In: Research Studies Press, London, 1996, 24–81. (1996) 
  15. Bereketoǧlu, H., Györi, I., On the boundedness of solutions of a third-order nonlinear differential equation, Dynam. Systems Appl. 6, 2 (1997), 263–270. (1997) MR1461442
  16. Callahan, J., Cox, D., Hoffman, K., O’Shea, D., Pollatsek, H., Senechal, L., L., Calculus in Context, The Five College Calculus Project, Five Colleges, 2008. (2008) 
  17. Chukwu, E. N., 10.1007/BF02417013, Ann. Mat. Pura. Appl. 104, 4 (1975), 123–149. (1975) MR0377180DOI10.1007/BF02417013
  18. Ezeilo, J. O. C., 10.1112/jlms/s1-36.1.439, J. London Math. Soc. 36 (1961), 439–444. (1961) Zbl0104.06501MR0136820DOI10.1112/jlms/s1-36.1.439
  19. Ezeilo, J. O. C., 10.1112/jlms/s1-38.1.11, J. London Math. Soc. 38 (1963), 11–16. (1963) Zbl0116.06902MR0166450DOI10.1112/jlms/s1-38.1.11
  20. Ezeilo, J. O. C., A boundedness theorem for a certain third-order differential equation, Proc. London Math. Soc. 13, 3 (1963), 99–124. (1963) Zbl0116.06902MR0142850
  21. Hara, T., 10.1016/0022-247X(81)90122-0, J. Math. Anal. Appl. 80, 2 (1981), 533–544. (1981) MR0614848DOI10.1016/0022-247X(81)90122-0
  22. Mehri, B., Niksirat, M. A., 10.1016/j.cam.2004.04.011, J. Comp. & Appl. Math. 174 (2005), 239–249. (2005) Zbl1069.34064MR2106439DOI10.1016/j.cam.2004.04.011
  23. Mehri, B., Shadman, D., Boundedness of solutions of certain third-order differential equation, Math. Inequal. Appl., 4 (1999), 545–549. (1999) Zbl0943.34022MR1717047
  24. Mehri, B., Shadman, D., On the existence of periodic solutions of a certain class of second order nonlinear differential equation, Math. Inequal. Appl. 1, 3 (1998), 431–436. (1998) MR1629412
  25. Mehri, B., Shadman, D., Periodic solutions of a certain non-linear third order differential equation, Scientia Iranica 11 (2004), 181–184. (2004) MR2106566
  26. Mehri, B., Periodic solution for certain non linear third-order differential equation, Indian J. Pure Appl. Math. 21, 3 (1990), 203–210. (1990) Zbl0708.34030MR1044260
  27. Minhós, F., Periodic solutions for a third order differential equation under conditions on the potential, Portugaliae Mathematica 55, 4 (1998), 475–484. (1998) Zbl0923.34045MR1672255
  28. LaSalle, J., Lefschetz, S., Stability by Liapunov’s direct method with applications, Academic Press, New York–London, 1961. (1961) MR0132876
  29. Ogundare, B. S., On the boundedness and stability results for the solutions of certain third-order nonlinear differential equations, Kragujevac J. Math. 29 (2006), 37–48. (2006) MR2288487
  30. Omeike, M. O., New result in the ultimate boundedness of solutions of a third-order nonlinear ordinary differential equation, J. Inequal. Pure and Appl. Math. 9, 1 (2008), Art. 15, 1–8. (2008) Zbl1173.34321MR2391282
  31. Reissig, R., Sansone, G., Conti, R., Nonlinear Differential Equations of Higher Order, Noordhoff International Publishing, Leyeden, 1974. (1974) MR0344556
  32. Rouche, N., Habets, N., Laloy, M., Stability Theory by Liapunov’s Direct Method, Applied Mathematical Sciences 22, Spriger-Verlag, New York–Heidelberg–Berlin, 1977. (1977) Zbl0364.34022MR0450715
  33. Shadman, D., Mehri, B., 10.1002/zamm.19950750218, Z Angew. Math. Mech. 75, 2 (1995), 164–166. (1995) Zbl0828.34029MR1319334DOI10.1002/zamm.19950750218
  34. Swick, K. E., 10.1112/jlms/s1-44.1.347, J. London Math. Soc. 44 (1969), 347–359. (1969) MR0236482DOI10.1112/jlms/s1-44.1.347
  35. Tejumola, H. O., A note on the boundedness of solutions of some nonlinear differential equations of the third-order, Ghana J. of Science 11, 2 (1970), 117–118. (1970) 
  36. Tejumola, H. O., 10.1007/BF02417936, Ann. Math. Pura. Appl. 92 (1972), 65–75. (1972) Zbl0242.34046MR0318615DOI10.1007/BF02417936
  37. Tunç, C., Çmar, I., On the existence of periodic solutions to nonlinear differential equations of second order, Differ. Uravn. Protsessy Upr. (Differential equations and control processes), 3 (2008), 1–6. (2008) MR2515107
  38. Tunç, C., Boundedness of solutions of a third-order nonlinear differential equation, J. Inequal. Pure and Appl. Math. 6, 1 (2005), 1–6. (2005) Zbl1082.34514MR2122950
  39. Tunç, C., 10.4067/S0716-09172009000200002, Proyecciones Journal of Mathematics 28, 2 (2009), 125–132. (2009) MR2529760DOI10.4067/S0716-09172009000200002
  40. Tunç, C., Some new results on the boundedness of solutions of a certain nonlinear differential equation of third-order, International J. of Nonlinear Science 7, 2 (2009), 246–256. (2009) Zbl1371.34045MR2496738
  41. Yoshizawa, T., Liapunov’s function and boundedness of solutions, Funkcialaj Ekvacioj 2 (1958), 71–103. (1958) MR0114981
  42. Yoshizawa, T., Stability Theory by Liapunov’s Second Method, The Mathematical Society of Japan, 1966. (1966) MR0208086
  43. Yoshizawa, T., Stability Theory and Existence of Periodic Solutions and Almost Periodic Solutions, Spriger-Verlag, New York–Heidelberg–Berlin, 1975. (1975) MR0466797

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.