Existence Results for a Fractional Boundary Value Problem via Critical Point Theory

A. Boucenna; Toufik Moussaoui

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2015)

  • Volume: 54, Issue: 1, page 47-64
  • ISSN: 0231-9721

Abstract

top
In this paper, we consider the following boundary value problem D T - α ( D 0 + α ( D T - α ( D 0 + α u ( t ) ) ) ) = f ( t , u ( t ) ) , t [ 0 , T ] , u ( 0 ) = u ( T ) = 0 D T - α ( D 0 + α u ( 0 ) ) = D T - α ( D 0 + α u ( T ) ) = 0 , where 0 < α 1 and f : [ 0 , T ] × is a continuous function, D 0 + α , D T - α are respectively the left and right fractional Riemann–Liouville derivatives and we prove the existence of at least one solution for this problem.

How to cite

top

Boucenna, A., and Moussaoui, Toufik. "Existence Results for a Fractional Boundary Value Problem via Critical Point Theory." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 54.1 (2015): 47-64. <http://eudml.org/doc/271600>.

@article{Boucenna2015,
abstract = {In this paper, we consider the following boundary value problem \[ \left\lbrace \begin\{array\}\{lll\} D\_\{T^\{-\}\}^\{\alpha \} (D\_\{0^\{+\}\}^\{\alpha \} (D\_\{T^\{-\}\}^\{\alpha \}(D\_\{0^\{+\}\}^\{\alpha \} u(t))) ) = f(t, u(t)), \quad t \in [0, T], \\ u(0)= u(T)= 0\\ D\_\{T^\{-\}\}^\{\alpha \}(D\_\{0^\{+\}\}^\{\alpha \}u(0))= D\_\{T^\{-\}\}^\{\alpha \}(D\_\{0^\{+\}\}^\{\alpha \}u(T))= 0, \end\{array\} \right. \] where $0 < \alpha \le 1$ and $f\colon [0, T]\times \mathbb \{R\} \rightarrow \mathbb \{R\} $ is a continuous function, $D_\{0^\{+\}\}^\{\alpha \}$, $D_\{T^\{-\}\}^\{\alpha \}$ are respectively the left and right fractional Riemann–Liouville derivatives and we prove the existence of at least one solution for this problem.},
author = {Boucenna, A., Moussaoui, Toufik},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Existence results; fractional differential equation; boundary value problem; critical point theory; minimization principle; Mountain pass theorem; Third order; nonlinear differential equation; uniform stability; uniform ultimate boundedness; periodic solutions},
language = {eng},
number = {1},
pages = {47-64},
publisher = {Palacký University Olomouc},
title = {Existence Results for a Fractional Boundary Value Problem via Critical Point Theory},
url = {http://eudml.org/doc/271600},
volume = {54},
year = {2015},
}

TY - JOUR
AU - Boucenna, A.
AU - Moussaoui, Toufik
TI - Existence Results for a Fractional Boundary Value Problem via Critical Point Theory
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2015
PB - Palacký University Olomouc
VL - 54
IS - 1
SP - 47
EP - 64
AB - In this paper, we consider the following boundary value problem \[ \left\lbrace \begin{array}{lll} D_{T^{-}}^{\alpha } (D_{0^{+}}^{\alpha } (D_{T^{-}}^{\alpha }(D_{0^{+}}^{\alpha } u(t))) ) = f(t, u(t)), \quad t \in [0, T], \\ u(0)= u(T)= 0\\ D_{T^{-}}^{\alpha }(D_{0^{+}}^{\alpha }u(0))= D_{T^{-}}^{\alpha }(D_{0^{+}}^{\alpha }u(T))= 0, \end{array} \right. \] where $0 < \alpha \le 1$ and $f\colon [0, T]\times \mathbb {R} \rightarrow \mathbb {R} $ is a continuous function, $D_{0^{+}}^{\alpha }$, $D_{T^{-}}^{\alpha }$ are respectively the left and right fractional Riemann–Liouville derivatives and we prove the existence of at least one solution for this problem.
LA - eng
KW - Existence results; fractional differential equation; boundary value problem; critical point theory; minimization principle; Mountain pass theorem; Third order; nonlinear differential equation; uniform stability; uniform ultimate boundedness; periodic solutions
UR - http://eudml.org/doc/271600
ER -

References

top
  1. Jiao, F., Zhou, Y., 10.1142/S0218127412500861, International Journal of Bifurcation and Chaos 22, 1250086 (2012), 1–17. (2012) Zbl1258.34015MR2926062DOI10.1142/S0218127412500861
  2. Jiao, F., Zhou, Y., 10.1016/j.camwa.2011.03.086, Computers and Mathematics with Applications 62 (2011), 1181–1199. (2011) Zbl1235.34017MR2824707DOI10.1016/j.camwa.2011.03.086
  3. Bai, C., Infinitely many solutions for a perturbed nonlinear fractional boundary-value problem, Electonic Journal of Differential Equations 136 (2013), 1–12. (2013) Zbl1295.34007MR3084616
  4. Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., Theory and Applications of Fractional Differential Equations, Elsevier Science, Amsterdam, 2006. (2006) Zbl1092.45003MR2218073
  5. Badiale, M., Serra, E., Semilinear Elliptic Equations for Beginners, Springer-Verlag, New York, 2011. (2011) Zbl1214.35025MR2722059
  6. Friedman, A., Foundations of Modern Analysis, Dover Publications, New York, 1982. (1982) Zbl0557.46001MR0663003
  7. Samko, S. G., Kilbas, A. A., Marichev, O. I., Fractional Integral and Derivatives: Theory and Applications, Gordon and Breach, Newark, NJ, 1993. (1993) MR1347689
  8. Diethlem, K., The Analysis of Fractional Differential Equations, Springer, New York, 2010. (2010) MR2680847
  9. Rabinowitz, P. H., Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics 65, American Mathematical Society, Providence, RI, 1986. (1986) Zbl0609.58002MR0845785
  10. Mawhin, J., Willem, M., Critical point theory and hamiltonian systems, Springer, New York, 1989. (1989) Zbl0676.58017MR0982267
  11. Podlubny, I., Fractional Differential Equations, Academic Press, San Diego, 1999. (1999) Zbl0924.34008MR1658022
  12. Brezis, H., Analyse fonctionnelle, théorie et applications, Massons, Paris, 1983. (1983) Zbl0511.46001MR0697382

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.