Existence Results for a Fractional Boundary Value Problem via Critical Point Theory
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2015)
- Volume: 54, Issue: 1, page 47-64
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topBoucenna, A., and Moussaoui, Toufik. "Existence Results for a Fractional Boundary Value Problem via Critical Point Theory." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 54.1 (2015): 47-64. <http://eudml.org/doc/271600>.
@article{Boucenna2015,
abstract = {In this paper, we consider the following boundary value problem \[ \left\lbrace \begin\{array\}\{lll\} D\_\{T^\{-\}\}^\{\alpha \} (D\_\{0^\{+\}\}^\{\alpha \} (D\_\{T^\{-\}\}^\{\alpha \}(D\_\{0^\{+\}\}^\{\alpha \} u(t))) ) = f(t, u(t)), \quad t \in [0, T], \\ u(0)= u(T)= 0\\ D\_\{T^\{-\}\}^\{\alpha \}(D\_\{0^\{+\}\}^\{\alpha \}u(0))= D\_\{T^\{-\}\}^\{\alpha \}(D\_\{0^\{+\}\}^\{\alpha \}u(T))= 0, \end\{array\} \right. \]
where $0 < \alpha \le 1$ and $f\colon [0, T]\times \mathbb \{R\} \rightarrow \mathbb \{R\} $ is a continuous function, $D_\{0^\{+\}\}^\{\alpha \}$, $D_\{T^\{-\}\}^\{\alpha \}$ are respectively the left and right fractional Riemann–Liouville derivatives and we prove the existence of at least one solution for this problem.},
author = {Boucenna, A., Moussaoui, Toufik},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Existence results; fractional differential equation; boundary value problem; critical point theory; minimization principle; Mountain pass theorem; Third order; nonlinear differential equation; uniform stability; uniform ultimate boundedness; periodic solutions},
language = {eng},
number = {1},
pages = {47-64},
publisher = {Palacký University Olomouc},
title = {Existence Results for a Fractional Boundary Value Problem via Critical Point Theory},
url = {http://eudml.org/doc/271600},
volume = {54},
year = {2015},
}
TY - JOUR
AU - Boucenna, A.
AU - Moussaoui, Toufik
TI - Existence Results for a Fractional Boundary Value Problem via Critical Point Theory
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2015
PB - Palacký University Olomouc
VL - 54
IS - 1
SP - 47
EP - 64
AB - In this paper, we consider the following boundary value problem \[ \left\lbrace \begin{array}{lll} D_{T^{-}}^{\alpha } (D_{0^{+}}^{\alpha } (D_{T^{-}}^{\alpha }(D_{0^{+}}^{\alpha } u(t))) ) = f(t, u(t)), \quad t \in [0, T], \\ u(0)= u(T)= 0\\ D_{T^{-}}^{\alpha }(D_{0^{+}}^{\alpha }u(0))= D_{T^{-}}^{\alpha }(D_{0^{+}}^{\alpha }u(T))= 0, \end{array} \right. \]
where $0 < \alpha \le 1$ and $f\colon [0, T]\times \mathbb {R} \rightarrow \mathbb {R} $ is a continuous function, $D_{0^{+}}^{\alpha }$, $D_{T^{-}}^{\alpha }$ are respectively the left and right fractional Riemann–Liouville derivatives and we prove the existence of at least one solution for this problem.
LA - eng
KW - Existence results; fractional differential equation; boundary value problem; critical point theory; minimization principle; Mountain pass theorem; Third order; nonlinear differential equation; uniform stability; uniform ultimate boundedness; periodic solutions
UR - http://eudml.org/doc/271600
ER -
References
top- Jiao, F., Zhou, Y., 10.1142/S0218127412500861, International Journal of Bifurcation and Chaos 22, 1250086 (2012), 1–17. (2012) Zbl1258.34015MR2926062DOI10.1142/S0218127412500861
- Jiao, F., Zhou, Y., 10.1016/j.camwa.2011.03.086, Computers and Mathematics with Applications 62 (2011), 1181–1199. (2011) Zbl1235.34017MR2824707DOI10.1016/j.camwa.2011.03.086
- Bai, C., Infinitely many solutions for a perturbed nonlinear fractional boundary-value problem, Electonic Journal of Differential Equations 136 (2013), 1–12. (2013) Zbl1295.34007MR3084616
- Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., Theory and Applications of Fractional Differential Equations, Elsevier Science, Amsterdam, 2006. (2006) Zbl1092.45003MR2218073
- Badiale, M., Serra, E., Semilinear Elliptic Equations for Beginners, Springer-Verlag, New York, 2011. (2011) Zbl1214.35025MR2722059
- Friedman, A., Foundations of Modern Analysis, Dover Publications, New York, 1982. (1982) Zbl0557.46001MR0663003
- Samko, S. G., Kilbas, A. A., Marichev, O. I., Fractional Integral and Derivatives: Theory and Applications, Gordon and Breach, Newark, NJ, 1993. (1993) MR1347689
- Diethlem, K., The Analysis of Fractional Differential Equations, Springer, New York, 2010. (2010) MR2680847
- Rabinowitz, P. H., Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics 65, American Mathematical Society, Providence, RI, 1986. (1986) Zbl0609.58002MR0845785
- Mawhin, J., Willem, M., Critical point theory and hamiltonian systems, Springer, New York, 1989. (1989) Zbl0676.58017MR0982267
- Podlubny, I., Fractional Differential Equations, Academic Press, San Diego, 1999. (1999) Zbl0924.34008MR1658022
- Brezis, H., Analyse fonctionnelle, théorie et applications, Massons, Paris, 1983. (1983) Zbl0511.46001MR0697382
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.