Some observations on filters with properties defined by open covers

Rodrigo Hernández-Gutiérrez; Paul J. Szeptycki

Commentationes Mathematicae Universitatis Carolinae (2015)

  • Volume: 56, Issue: 3, page 355-364
  • ISSN: 0010-2628

Abstract

top
We study the relation between the Hurewicz and Menger properties of filters considered topologically as subspaces of 𝒫 ( ω ) with the Cantor set topology.

How to cite

top

Hernández-Gutiérrez, Rodrigo, and Szeptycki, Paul J.. "Some observations on filters with properties defined by open covers." Commentationes Mathematicae Universitatis Carolinae 56.3 (2015): 355-364. <http://eudml.org/doc/271602>.

@article{Hernández2015,
abstract = {We study the relation between the Hurewicz and Menger properties of filters considered topologically as subspaces of $\mathcal \{P\}(\omega )$ with the Cantor set topology.},
author = {Hernández-Gutiérrez, Rodrigo, Szeptycki, Paul J.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {filters; Menger property; Hurewicz property; filter; Hurewicz property; Menger property},
language = {eng},
number = {3},
pages = {355-364},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Some observations on filters with properties defined by open covers},
url = {http://eudml.org/doc/271602},
volume = {56},
year = {2015},
}

TY - JOUR
AU - Hernández-Gutiérrez, Rodrigo
AU - Szeptycki, Paul J.
TI - Some observations on filters with properties defined by open covers
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2015
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 56
IS - 3
SP - 355
EP - 364
AB - We study the relation between the Hurewicz and Menger properties of filters considered topologically as subspaces of $\mathcal {P}(\omega )$ with the Cantor set topology.
LA - eng
KW - filters; Menger property; Hurewicz property; filter; Hurewicz property; Menger property
UR - http://eudml.org/doc/271602
ER -

References

top
  1. Bartoszyński T., Judah H., Set Theory. On the Structure of the Real Line, A K Peters, Ltd., Wellesley, MA, 1995, xii+546 pp., ISBN: 1-56881-044-X. MR1350295
  2. Bartoszyński T., Tsaban B., 10.1090/S0002-9939-05-07997-9, Proc. Amer. Math. Soc. 134 (2006), no. 2, 605–615. Zbl1137.54018MR2176030DOI10.1090/S0002-9939-05-07997-9
  3. Chodounský D., Repovš D., Zdomskyy L., Mathias forcing and combinatorial covering properties of filters, preprint. 
  4. van Douwen Eric K., The integers and topology, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 111–167. Zbl0561.54004MR0776622
  5. Repovš D., Zdomskyy L., Zhang S., Countable dense homogeneous filters and the Menger covering property, Fundamenta Mathematicae(to appear). MR3194416
  6. Gerlits J., Nagy Z., 10.1016/0166-8641(82)90065-7, I., Topology Appl. 14 (1982), no. 2, 151–161. Zbl0503.54020MR0667661DOI10.1016/0166-8641(82)90065-7
  7. Guzmán O., Hrušák M., Martínez-Celis A., Canjar filters, preprint. 
  8. Guzmán O., Hrušák M., Martínez-Celis A., Canjar filters II, preprint. 
  9. Hernández-Gutiérrez R., Hrušák M., 10.4064/cm130-2-9, Colloq. Math. 130 (2013), 281–289. Zbl1272.54020MR3049068DOI10.4064/cm130-2-9
  10. Hurewicz W., " Uber Folgen stetiger Funktionen, Fund. Math. 9 (1927) 193–204. 
  11. Hrušák M., 10.1090/conm/533/10503, Set theory and its applications, Contemp. Math., 533, Amer. Math. Soc., Providence, RI, 2011, pp. 29–69. Zbl1239.03030MR2777744DOI10.1090/conm/533/10503
  12. Just W., Miller A., Scheepers M., Szeptycki Paul J., 10.1016/S0166-8641(96)00075-2, Topology Appl. 73 (1996), no. 3, 241–266. Zbl0870.03021MR1419798DOI10.1016/S0166-8641(96)00075-2
  13. Kechris A.S., Classical Descriptive Set Theory, Graduate Texts in Mathematics, 156, Springer, New York, 1995, xviii+402 pp., ISBN: 0-387-94374-9. Zbl0819.04002MR1321597
  14. Kočinac L.D.R., Scheepers M., 10.4064/fm179-2-2, Fund. Math. 179 (2003), no. 2, 131–155. Zbl1115.91013MR2029229DOI10.4064/fm179-2-2
  15. Kunen K., Medini A., Zdomskyy L., Seven characterizations of non-meager P-filters, preprint. 
  16. Marciszewski W., 10.1016/S0166-8641(97)00216-2, Topology Appl. 89 (1998), no. 3, 241–247. Zbl0969.54016MR1645168DOI10.1016/S0166-8641(97)00216-2
  17. Miller A.W., Tsaban B., 10.1090/S0002-9939-10-10407-9, Proc. Amer. Math. Soc. 138 (2010), no. 9, 3313–3321. Zbl1200.03038MR2653961DOI10.1090/S0002-9939-10-10407-9
  18. Nyikos P., The Cantor tree and the Fréchet-Urysohn property, Papers on general topology and related category theory and topological algebra (New York, 1985/1987), 109–123, Ann. New York Acad. Sci., 552, New York Acad. Sci., New York, 1989. Zbl0894.54021MR1020779
  19. Reznichenko E.A., Sipacheva O.V., Fréchet-Urysohn-type properties in topological spaces, groups, and locally convex spaces, Vestnik Moskov. Univ. Ser. Mat. Mekh. (3) (1999), 32–38. MR1711871
  20. Tsaban B., 10.1090/conm/533/10509, Set theory and its applications, Contemp. Math., 533, American Mathematical Society, Providence, RI, 2011, pp. 211–226. Zbl1252.03111MR2777750DOI10.1090/conm/533/10509
  21. Tsaban B., Selection principles and special sets of reals, Open Problems in Topology II, edited by Elliott Pearl, Elsevier B.V., Amsterdam, 2007, xii+763 pp., ISBN: 978-0-444-52208-5. MR2367385
  22. Tsaban B., Zdomskyy L., 10.4171/JEMS/132, J. Eur. Math. Soc. (JEMS) 10 (2008), no. 3, 837–866. Zbl1159.03030MR2421163DOI10.4171/JEMS/132

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.