Existence of solutions for Navier problems with degenerate nonlinear elliptic equations
Communications in Mathematics (2015)
- Volume: 23, Issue: 1, page 33-45
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topCavalheiro, Albo Carlos. "Existence of solutions for Navier problems with degenerate nonlinear elliptic equations." Communications in Mathematics 23.1 (2015): 33-45. <http://eudml.org/doc/271642>.
@article{Cavalheiro2015,
abstract = {In this paper we are interested in the existence and uniqueness of solutions for the Navier problem associated to the degenerate nonlinear elliptic equations \begin\{equation*\} \Delta (v(x)\,\vert \Delta u\vert ^\{q-2\}\Delta u) -\sum \_\{j=1\}^n D\_j\bigl [\omega (x) \{\mathcal \{A\}\}\_j(x, u, \{\nabla \}u)\bigr ] = f\_0(x) - \sum \_\{j=1\}^nD\_jf\_j(x), \text\{ in \}\Omega \end\{equation*\}
in the setting of the weighted Sobolev spaces.},
author = {Cavalheiro, Albo Carlos},
journal = {Communications in Mathematics},
keywords = {degenerate nolinear elliptic equations; weighted Sobolev spaces; Navier problem},
language = {eng},
number = {1},
pages = {33-45},
publisher = {University of Ostrava},
title = {Existence of solutions for Navier problems with degenerate nonlinear elliptic equations},
url = {http://eudml.org/doc/271642},
volume = {23},
year = {2015},
}
TY - JOUR
AU - Cavalheiro, Albo Carlos
TI - Existence of solutions for Navier problems with degenerate nonlinear elliptic equations
JO - Communications in Mathematics
PY - 2015
PB - University of Ostrava
VL - 23
IS - 1
SP - 33
EP - 45
AB - In this paper we are interested in the existence and uniqueness of solutions for the Navier problem associated to the degenerate nonlinear elliptic equations \begin{equation*} \Delta (v(x)\,\vert \Delta u\vert ^{q-2}\Delta u) -\sum _{j=1}^n D_j\bigl [\omega (x) {\mathcal {A}}_j(x, u, {\nabla }u)\bigr ] = f_0(x) - \sum _{j=1}^nD_jf_j(x), \text{ in }\Omega \end{equation*}
in the setting of the weighted Sobolev spaces.
LA - eng
KW - degenerate nolinear elliptic equations; weighted Sobolev spaces; Navier problem
UR - http://eudml.org/doc/271642
ER -
References
top- Cavalheiro, A.C., 10.1515/jaa-2013-0003, J. Appl. Anal., 19, 2013, 41-54, (2013) Zbl1278.35086MR3069764DOI10.1515/jaa-2013-0003
- Cavalheiro, A.C., 10.7494/OpMath.2013.33.3.439, Opuscula Math., 33, 3, 2013, 439-453, (2013) MR3046406DOI10.7494/OpMath.2013.33.3.439
- Chipot, M., Elliptic Equations: An Introductory Course, 2009, Birkhäuser, Berlin, (2009) Zbl1171.35003MR2494977
- Drábek, P., Kufner, A., Nicolosi, F., Quasilinear Elliptic Equations with Degenerations and Singularities, 1997, Walter de Gruyter, Berlin, (1997) Zbl0894.35002MR1460729
- Fabes, E., Kenig, C., Serapioni, R., 10.1080/03605308208820218, Comm. Partial Differential Equations 7, 1982, 77–116, (1982) Zbl0498.35042MR0643158DOI10.1080/03605308208820218
- Fučík, S., John, O., Kufner, A., Function Spaces, 1977, Noordhoff International Publ., Leiden, (1977) Zbl0364.46022MR0482102
- Garcia-Cuerva, J., Francia, J.L. Rubio de, Weighted Norm Inequalities and Related Topics, 116, 1985, North-Holland Mathematics Studies, (1985) MR0807149
- Gilbarg, D., Trudinger, N.S., Elliptic Partial Equations of Second Order, 1983, Springer, New York, (1983) MR0737190
- Heinonen, J., Kilpeläinen, T., Martio, O., Nonlinear Potential Theory of Degenerate Elliptic Equations, 1993, Oxford Math., Clarendon Press, (1993) Zbl0780.31001MR1207810
- Kufner, A., Weighted Sobolev Spaces, 1985, John Wiley & Sons, (1985) Zbl0579.35021MR0802206
- Muckenhoupt, B., 10.1090/S0002-9947-1972-0293384-6, Trans. Amer. Math. Soc., 165, 1972, 207-226, (1972) Zbl0236.26016MR0293384DOI10.1090/S0002-9947-1972-0293384-6
- Talbi, M., Tsouli, N., 10.1007/s00009-007-0104-3, Mediterr. J. Math., 4, 2007, 73-86, (2007) Zbl1150.35072MR2310704DOI10.1007/s00009-007-0104-3
- Torchinsky, A., Real-Variable Methods in Harmonic Analysis, 1986, Academic Press, São Diego, (1986) Zbl0621.42001MR0869816
- Turesson, B.O., Nonlinear Potential Theory and Weighted Sobolev Spaces, 1736, 2000, Springer-Verlag, (2000) Zbl0949.31006MR1774162
- Zeidler, E., Nonlinear Functional Analysis and its Applications, Vol. I, 1990, Springer-Verlag, (1990)
- Zeidler, E., Nonlinear Functional Analysis and its Applications, Vol. II/B, 1990, Springer-Verlag, (1990) MR1033498
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.