Existence of solutions for Navier problems with degenerate nonlinear elliptic equations

Albo Carlos Cavalheiro

Communications in Mathematics (2015)

  • Volume: 23, Issue: 1, page 33-45
  • ISSN: 1804-1388

Abstract

top
In this paper we are interested in the existence and uniqueness of solutions for the Navier problem associated to the degenerate nonlinear elliptic equations Δ ( v ( x ) | Δ u | q - 2 Δ u ) - j = 1 n D j ω ( x ) 𝒜 j ( x , u , u ) = f 0 ( x ) - j = 1 n D j f j ( x ) , in Ω in the setting of the weighted Sobolev spaces.

How to cite

top

Cavalheiro, Albo Carlos. "Existence of solutions for Navier problems with degenerate nonlinear elliptic equations." Communications in Mathematics 23.1 (2015): 33-45. <http://eudml.org/doc/271642>.

@article{Cavalheiro2015,
abstract = {In this paper we are interested in the existence and uniqueness of solutions for the Navier problem associated to the degenerate nonlinear elliptic equations \begin\{equation*\} \Delta (v(x)\,\vert \Delta u\vert ^\{q-2\}\Delta u) -\sum \_\{j=1\}^n D\_j\bigl [\omega (x) \{\mathcal \{A\}\}\_j(x, u, \{\nabla \}u)\bigr ] = f\_0(x) - \sum \_\{j=1\}^nD\_jf\_j(x), \text\{ in \}\Omega \end\{equation*\} in the setting of the weighted Sobolev spaces.},
author = {Cavalheiro, Albo Carlos},
journal = {Communications in Mathematics},
keywords = {degenerate nolinear elliptic equations; weighted Sobolev spaces; Navier problem},
language = {eng},
number = {1},
pages = {33-45},
publisher = {University of Ostrava},
title = {Existence of solutions for Navier problems with degenerate nonlinear elliptic equations},
url = {http://eudml.org/doc/271642},
volume = {23},
year = {2015},
}

TY - JOUR
AU - Cavalheiro, Albo Carlos
TI - Existence of solutions for Navier problems with degenerate nonlinear elliptic equations
JO - Communications in Mathematics
PY - 2015
PB - University of Ostrava
VL - 23
IS - 1
SP - 33
EP - 45
AB - In this paper we are interested in the existence and uniqueness of solutions for the Navier problem associated to the degenerate nonlinear elliptic equations \begin{equation*} \Delta (v(x)\,\vert \Delta u\vert ^{q-2}\Delta u) -\sum _{j=1}^n D_j\bigl [\omega (x) {\mathcal {A}}_j(x, u, {\nabla }u)\bigr ] = f_0(x) - \sum _{j=1}^nD_jf_j(x), \text{ in }\Omega \end{equation*} in the setting of the weighted Sobolev spaces.
LA - eng
KW - degenerate nolinear elliptic equations; weighted Sobolev spaces; Navier problem
UR - http://eudml.org/doc/271642
ER -

References

top
  1. Cavalheiro, A.C., 10.1515/jaa-2013-0003, J. Appl. Anal., 19, 2013, 41-54, (2013) Zbl1278.35086MR3069764DOI10.1515/jaa-2013-0003
  2. Cavalheiro, A.C., 10.7494/OpMath.2013.33.3.439, Opuscula Math., 33, 3, 2013, 439-453, (2013) MR3046406DOI10.7494/OpMath.2013.33.3.439
  3. Chipot, M., Elliptic Equations: An Introductory Course, 2009, Birkhäuser, Berlin, (2009) Zbl1171.35003MR2494977
  4. Drábek, P., Kufner, A., Nicolosi, F., Quasilinear Elliptic Equations with Degenerations and Singularities, 1997, Walter de Gruyter, Berlin, (1997) Zbl0894.35002MR1460729
  5. Fabes, E., Kenig, C., Serapioni, R., 10.1080/03605308208820218, Comm. Partial Differential Equations 7, 1982, 77–116, (1982) Zbl0498.35042MR0643158DOI10.1080/03605308208820218
  6. Fučík, S., John, O., Kufner, A., Function Spaces, 1977, Noordhoff International Publ., Leiden, (1977) Zbl0364.46022MR0482102
  7. Garcia-Cuerva, J., Francia, J.L. Rubio de, Weighted Norm Inequalities and Related Topics, 116, 1985, North-Holland Mathematics Studies, (1985) MR0807149
  8. Gilbarg, D., Trudinger, N.S., Elliptic Partial Equations of Second Order, 1983, Springer, New York, (1983) MR0737190
  9. Heinonen, J., Kilpeläinen, T., Martio, O., Nonlinear Potential Theory of Degenerate Elliptic Equations, 1993, Oxford Math., Clarendon Press, (1993) Zbl0780.31001MR1207810
  10. Kufner, A., Weighted Sobolev Spaces, 1985, John Wiley & Sons, (1985) Zbl0579.35021MR0802206
  11. Muckenhoupt, B., 10.1090/S0002-9947-1972-0293384-6, Trans. Amer. Math. Soc., 165, 1972, 207-226, (1972) Zbl0236.26016MR0293384DOI10.1090/S0002-9947-1972-0293384-6
  12. Talbi, M., Tsouli, N., 10.1007/s00009-007-0104-3, Mediterr. J. Math., 4, 2007, 73-86, (2007) Zbl1150.35072MR2310704DOI10.1007/s00009-007-0104-3
  13. Torchinsky, A., Real-Variable Methods in Harmonic Analysis, 1986, Academic Press, São Diego, (1986) Zbl0621.42001MR0869816
  14. Turesson, B.O., Nonlinear Potential Theory and Weighted Sobolev Spaces, 1736, 2000, Springer-Verlag, (2000) Zbl0949.31006MR1774162
  15. Zeidler, E., Nonlinear Functional Analysis and its Applications, Vol. I, 1990, Springer-Verlag, (1990) 
  16. Zeidler, E., Nonlinear Functional Analysis and its Applications, Vol. II/B, 1990, Springer-Verlag, (1990) MR1033498

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.