Derivations and Translations on Trellises
Shashirekha B. Rai; S. Parameshwara Bhatta
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2015)
- Volume: 54, Issue: 1, page 129-136
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topRai, Shashirekha B., and Parameshwara Bhatta, S.. "Derivations and Translations on Trellises." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 54.1 (2015): 129-136. <http://eudml.org/doc/271660>.
@article{Rai2015,
abstract = {G. Szász, J. Szendrei, K. Iseki and J. Nieminen have made an extensive study of derivations and translations on lattices. In this paper, the concepts of meet-translations and derivations have been studied in trellises (also called weakly associative lattices or WA-lattices) and several results in lattices are extended to trellises. The main theorem of this paper, namely, that every derivatrion of a trellis is a meet-translation, is proved without using associativity and it generalizes a well-known result of G. Szász.},
author = {Rai, Shashirekha B., Parameshwara Bhatta, S.},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Psoset; trellis; ideal; meet-translation; derivation},
language = {eng},
number = {1},
pages = {129-136},
publisher = {Palacký University Olomouc},
title = {Derivations and Translations on Trellises},
url = {http://eudml.org/doc/271660},
volume = {54},
year = {2015},
}
TY - JOUR
AU - Rai, Shashirekha B.
AU - Parameshwara Bhatta, S.
TI - Derivations and Translations on Trellises
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2015
PB - Palacký University Olomouc
VL - 54
IS - 1
SP - 129
EP - 136
AB - G. Szász, J. Szendrei, K. Iseki and J. Nieminen have made an extensive study of derivations and translations on lattices. In this paper, the concepts of meet-translations and derivations have been studied in trellises (also called weakly associative lattices or WA-lattices) and several results in lattices are extended to trellises. The main theorem of this paper, namely, that every derivatrion of a trellis is a meet-translation, is proved without using associativity and it generalizes a well-known result of G. Szász.
LA - eng
KW - Psoset; trellis; ideal; meet-translation; derivation
UR - http://eudml.org/doc/271660
ER -
References
top- Fried, E., Tournaments and nonassociative lattices, Ann. Univ. Sci. Budapest. Eotvos Sect. Math. 13 (1970), 151–164. (1970) MR0321837
- Grätzer, G., General Lattice Theory, Birkhauser Verlag, Basel, 1978. (1978) MR0504338
- Harary, F., Graph Theory, Addison-Wesley Series in Mathematics, Addison-Wesley, Reading, 1971. (1971) MR0256911
- Iseki, K., On endomorphism with fixed elements on algebra, Proc. Japan Acad. 40, 1964, 403. (1964) MR0170839
- Nieminen, J., Derivations and translations on lattices, Acta Sci. Math. 38 (1976), 359–363. (1976) Zbl0344.06004MR0429687
- Nieminen, J., The lattice of translations on a lattice, Acta Sci. Math. 39 (1977), 109–113. (1977) Zbl0364.06005MR0441798
- Parameshwara Bhatta, S., Shashirekha, H., 10.1007/s000120050189, Algebra Universalis 44 (2000), 305–308. (2000) Zbl1013.06003MR1816026DOI10.1007/s000120050189
- Skala, H. L., 10.1007/BF02944982, Algebra Universalis 1 (1971), 218–233. (1971) Zbl0242.06003MR0302523DOI10.1007/BF02944982
- Skala, H. L., Trellis Theory, Amer. Math. Soc., Providence, R.I., 1972. (1972) Zbl0242.06004MR0325474
- Szász, G., Derivations of lattices, Acta Sci. Math. 36 (1975), 149–154. (1975) Zbl0284.06001MR0382090
- Szász, G., Szendrei, J., Über die Translationen der Halbverbände, Acta. Sci. Math. 18 (1957), 44–47. (1957) Zbl0078.02002MR0087667
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.