Reflecting character and pseudocharacter

Lucia R. Junqueira; Alberto M. E. Levi

Commentationes Mathematicae Universitatis Carolinae (2015)

  • Volume: 56, Issue: 3, page 365-376
  • ISSN: 0010-2628

Abstract

top
We say that a cardinal function φ reflects an infinite cardinal κ , if given a topological space X with φ ( X ) κ , there exists Y [ X ] κ with φ ( Y ) κ . We investigate some problems, discussed by Hodel and Vaughan in Reflection theorems for cardinal functions, Topology Appl. 100 (2000), 47–66, and Juhász in Cardinal functions and reflection, Topology Atlas Preprint no. 445, 2000, related to the reflection for the cardinal functions character and pseudocharacter. Among other results, we present some new equivalences with CH .

How to cite

top

Junqueira, Lucia R., and Levi, Alberto M. E.. "Reflecting character and pseudocharacter." Commentationes Mathematicae Universitatis Carolinae 56.3 (2015): 365-376. <http://eudml.org/doc/271664>.

@article{Junqueira2015,
abstract = {We say that a cardinal function $\phi $ reflects an infinite cardinal $\kappa $, if given a topological space $X$ with $\phi (X) \ge \kappa $, there exists $Y\in [X]^\{\le \kappa \}$ with $\phi (Y)\ge \kappa $. We investigate some problems, discussed by Hodel and Vaughan in Reflection theorems for cardinal functions, Topology Appl. 100 (2000), 47–66, and Juhász in Cardinal functions and reflection, Topology Atlas Preprint no. 445, 2000, related to the reflection for the cardinal functions character and pseudocharacter. Among other results, we present some new equivalences with $\mathrm \{CH\}$.},
author = {Junqueira, Lucia R., Levi, Alberto M. E.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {cardinal function; character; pseudocharacter; reflection theorem; compact spaces; Lindelöf spaces; continuum hypothesis},
language = {eng},
number = {3},
pages = {365-376},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Reflecting character and pseudocharacter},
url = {http://eudml.org/doc/271664},
volume = {56},
year = {2015},
}

TY - JOUR
AU - Junqueira, Lucia R.
AU - Levi, Alberto M. E.
TI - Reflecting character and pseudocharacter
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2015
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 56
IS - 3
SP - 365
EP - 376
AB - We say that a cardinal function $\phi $ reflects an infinite cardinal $\kappa $, if given a topological space $X$ with $\phi (X) \ge \kappa $, there exists $Y\in [X]^{\le \kappa }$ with $\phi (Y)\ge \kappa $. We investigate some problems, discussed by Hodel and Vaughan in Reflection theorems for cardinal functions, Topology Appl. 100 (2000), 47–66, and Juhász in Cardinal functions and reflection, Topology Atlas Preprint no. 445, 2000, related to the reflection for the cardinal functions character and pseudocharacter. Among other results, we present some new equivalences with $\mathrm {CH}$.
LA - eng
KW - cardinal function; character; pseudocharacter; reflection theorem; compact spaces; Lindelöf spaces; continuum hypothesis
UR - http://eudml.org/doc/271664
ER -

References

top
  1. Casarrubias-Segura F., Ramírez-Páramo A., Reflection theorems for some cardinal functions, Topology Proc. 31 (2007), 51–65. Zbl1144.54003MR2363151
  2. Christodoulou S., Initially κ -compact spaces for large κ , Comment. Math. Univ. Carolin. 40 (1999), no. 2, 319–325. Zbl0976.54022MR1732652
  3. Dow A., An introduction to applications of elementary submodels to topology, Topology Proc. 13 (1988), 17–72. Zbl0696.03024MR1031969
  4. Eckertson F.W., 10.1016/0166-8641(94)00051-4, Topology Appl. 62 (1995), 255–261. Zbl0861.54002MR1326825DOI10.1016/0166-8641(94)00051-4
  5. Engelking R., General Topology, Heldermann, Berlin, 1989. Zbl0684.54001MR1039321
  6. Hajnal A., Juhász I., 10.1090/S0002-9939-1980-0572322-2, Proc. Amer. Math. Soc. 79 (1980), 657–658. Zbl0432.54003MR0572322DOI10.1090/S0002-9939-1980-0572322-2
  7. Hodel R.E., Cardinal functions I, Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pp. 1–61. Zbl0559.54003MR0776620
  8. Hodel R.E., Vaughan J.E., 10.1016/S0166-8641(99)00056-5, Topology Appl. 100 (2000), 47–66. Zbl0943.54003MR1731704DOI10.1016/S0166-8641(99)00056-5
  9. Jech T., Set Theory, Springer Monographs in Mathematics, Springer, Berlin, 2003. The third millennium edition, revised and expanded. Zbl1007.03002MR1940513
  10. Juhász I., Cardinal functions in topology – ten years later, Mathematical Centre Tracts, 123, Amsterdam, 1980. Zbl0479.54001MR0576927
  11. Juhász I., Cardinal functions and reflection, Topology Atlas Preprint no. 445, 2000. MR0365453
  12. Juhász I., Koszmider P., Soukup L., 10.1016/j.topol.2009.04.004, Topology Appl. 156 (2009), 1863-1879. Zbl1168.54003MR2519221DOI10.1016/j.topol.2009.04.004
  13. Juhász I., Weiss W.A.R., 10.4064/fm207-2-6, Fund. Math. 207 (2010), 179–196. Zbl1198.54003MR2586011DOI10.4064/fm207-2-6
  14. Junqueira L.R., Tall F.D., 10.1016/S0166-8641(97)00075-8, Topology Appl. 82 (1998), 239–266. Zbl0903.54002MR1602479DOI10.1016/S0166-8641(97)00075-8
  15. Junqueira L.R., Upwards preservation by elementary submodels, Topology Proc. 25 (2000), 225–249. Zbl1002.54003MR1875594
  16. Stephenson R.M., Jr., Initially κ -compact and related spaces, Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pp. 603–632. Zbl0588.54025MR0776632
  17. Tkačenko M.G., Chains and cardinals, Soviet Math. Dokl. 19 (1978), 382–385. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.