Random matroids

Kordecki Wojciech

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1997

Abstract

top
CONTENTS1. Introduction.............................................................................52. Matroids..................................................................................6  2.1. Notations and basic properties...........................................6  2.2. Gaussian coefficients.......................................................10  2.3. Projective geometries.......................................................11  2.4. Special classes................................................................143. Probabilistic tools..................................................................15  3.1. Poisson convergence.......................................................15  3.2 Normal convergence.........................................................17  3.3. Markov processes on finite lattices..................................184. Random matroids - general approach..................................19  4.1. Definitions........................................................................19  4.2. Rank.................................................................................21  4.3. Duality..............................................................................235. Random projective geometries - combinatorial results..........26  5.1. Distribution of rank...........................................................26  5.2. Fullsubspaces - expectation and variance.......................30  5.3. Submatroids of a given type............................................336. Random projective geometries - limit theorems....................33  6.1. Rank of random subspaces.............................................33  6.2. Small submatroids...........................................................38  6.3. Full subspaces................................................................43  6.4. Related results................................................................467. Problems and conclusions....................................................49Appendix: tables.......................................................................49  1. Gaussian coefficients.........................................................49  2. Probabilities P ( r ) .........................................................51  3. Parameters of X..................................................................53Bibliography..............................................................................541991 Mathematics Subject Classification: Primary 05B35; Secondary 60C05.

How to cite

top

Kordecki Wojciech. Random matroids. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1997. <http://eudml.org/doc/271749>.

@book{KordeckiWojciech1997,
abstract = {CONTENTS1. Introduction.............................................................................52. Matroids..................................................................................6  2.1. Notations and basic properties...........................................6  2.2. Gaussian coefficients.......................................................10  2.3. Projective geometries.......................................................11  2.4. Special classes................................................................143. Probabilistic tools..................................................................15  3.1. Poisson convergence.......................................................15  3.2 Normal convergence.........................................................17  3.3. Markov processes on finite lattices..................................184. Random matroids - general approach..................................19  4.1. Definitions........................................................................19  4.2. Rank.................................................................................21  4.3. Duality..............................................................................235. Random projective geometries - combinatorial results..........26  5.1. Distribution of rank...........................................................26  5.2. Fullsubspaces - expectation and variance.......................30  5.3. Submatroids of a given type............................................336. Random projective geometries - limit theorems....................33  6.1. Rank of random subspaces.............................................33  6.2. Small submatroids...........................................................38  6.3. Full subspaces................................................................43  6.4. Related results................................................................467. Problems and conclusions....................................................49Appendix: tables.......................................................................49  1. Gaussian coefficients.........................................................49  2. Probabilities $P^\{(r)\}$.........................................................51  3. Parameters of X..................................................................53Bibliography..............................................................................541991 Mathematics Subject Classification: Primary 05B35; Secondary 60C05.},
author = {Kordecki Wojciech},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Random matroids},
url = {http://eudml.org/doc/271749},
year = {1997},
}

TY - BOOK
AU - Kordecki Wojciech
TI - Random matroids
PY - 1997
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTS1. Introduction.............................................................................52. Matroids..................................................................................6  2.1. Notations and basic properties...........................................6  2.2. Gaussian coefficients.......................................................10  2.3. Projective geometries.......................................................11  2.4. Special classes................................................................143. Probabilistic tools..................................................................15  3.1. Poisson convergence.......................................................15  3.2 Normal convergence.........................................................17  3.3. Markov processes on finite lattices..................................184. Random matroids - general approach..................................19  4.1. Definitions........................................................................19  4.2. Rank.................................................................................21  4.3. Duality..............................................................................235. Random projective geometries - combinatorial results..........26  5.1. Distribution of rank...........................................................26  5.2. Fullsubspaces - expectation and variance.......................30  5.3. Submatroids of a given type............................................336. Random projective geometries - limit theorems....................33  6.1. Rank of random subspaces.............................................33  6.2. Small submatroids...........................................................38  6.3. Full subspaces................................................................43  6.4. Related results................................................................467. Problems and conclusions....................................................49Appendix: tables.......................................................................49  1. Gaussian coefficients.........................................................49  2. Probabilities $P^{(r)}$.........................................................51  3. Parameters of X..................................................................53Bibliography..............................................................................541991 Mathematics Subject Classification: Primary 05B35; Secondary 60C05.
LA - eng
UR - http://eudml.org/doc/271749
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.