Algebraic entropy for valuation domains
Topological Algebra and its Applications (2015)
- Volume: 3, Issue: 1, page 34-44, electronic only
- ISSN: 2299-3231
Access Full Article
topAbstract
topHow to cite
topPaolo Zanardo. "Algebraic entropy for valuation domains." Topological Algebra and its Applications 3.1 (2015): 34-44, electronic only. <http://eudml.org/doc/271758>.
@article{PaoloZanardo2015,
abstract = {Let R be a non-discrete Archimedean valuation domain, G an R-module, Φ ∈ EndR(G).We compute the algebraic entropy entv(Φ), when Φ is restricted to a cyclic trajectory in G. We derive a special case of the Addition Theorem for entv, that is proved directly, without using the deep results and the difficult techniques of the paper by Salce and Virili [8].},
author = {Paolo Zanardo},
journal = {Topological Algebra and its Applications},
keywords = {Algebraic entropy; valuation domains; algebraic entropy},
language = {eng},
number = {1},
pages = {34-44, electronic only},
title = {Algebraic entropy for valuation domains},
url = {http://eudml.org/doc/271758},
volume = {3},
year = {2015},
}
TY - JOUR
AU - Paolo Zanardo
TI - Algebraic entropy for valuation domains
JO - Topological Algebra and its Applications
PY - 2015
VL - 3
IS - 1
SP - 34
EP - 44, electronic only
AB - Let R be a non-discrete Archimedean valuation domain, G an R-module, Φ ∈ EndR(G).We compute the algebraic entropy entv(Φ), when Φ is restricted to a cyclic trajectory in G. We derive a special case of the Addition Theorem for entv, that is proved directly, without using the deep results and the difficult techniques of the paper by Salce and Virili [8].
LA - eng
KW - Algebraic entropy; valuation domains; algebraic entropy
UR - http://eudml.org/doc/271758
ER -
References
top- [1] R. L. Adler, A. G. Konheim, M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309–319. Zbl0127.13102
- [2] R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401–414. Zbl0212.29201
- [3] D. Dikranjan, A. Giordano Bruno, Discrete dynamical systems in group theory, Note Mat. 33 (2013), no. 1, 1–48. Zbl1280.37023
- [4] D. Dikranjan, B. Goldsmith, L. Salce, P. Zanardo, Algebraic entropy for abelian groups, Trans. Amer.Math. Soc. 361 (2009), no. 7, 3401–3434. Zbl1176.20057
- [5] L. Fuchs, L. Salce, Modules over non-Noetherian domains, Mathematical Surveys and Monographs, 84. American Mathematical Society, Providence, RI, 2001. Zbl0973.13001
- [6] D.G. Northcott, M. Reufel, A generalization of the concept of length, Quart. J. Math. Oxford (2) 16 (1965) 297–321. Zbl0129.02203
- [7] L. Salce, P. Vámos, S. Virili, Length functions, multiplicities and algebraic entropy, ForumMath. 25 (2013), no. 2, 255–282. Zbl1286.16002
- [8] L. Salce, S. Virili, The addition theorem for algebraic entropies induced by non-discrete length functions, to appear.
- [9] L. Salce, P. Zanardo, Finitely generated modules over valuation rings, Comm. Algebra 12 (1984), no. 15-16, 1795–1812. [Crossref] Zbl0539.13007
- [10] L. Salce, P. Zanardo, A general notion of algebraic entropy and the rank-entropy, Forum Math. 21 (2009), no. 4, 561–587. [WoS] Zbl1203.20048
- [11] P. Vámos, Length functions on modules, Ph.D. thesis, University of Shefleld, 1968. Zbl0153.37101
- [12] P. Vámos, Additive functions and duality over Noetherian rings, Quart. J. Math. Oxford Ser. (2) 19 (1968) 43–55. [Crossref] Zbl0153.37101
- [13] S. Virili, Length functions of Grothendieck categories with applications to infinite group representations, arXiv: 1410.8306.
- [14] M. D. Weiss, Algebraic and other entropies of group endomorphisms,Math. Systems Theory, 8 (1974/75), no. 3, 243–248. Zbl0298.28014
- [15] P. Zanardo, Multiplicative invariants and length functions over valuation domains, J. Commut. Algebra 3 (2011), no. 4, 561–587. [WoS][Crossref] Zbl1250.13016
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.