Only 3-generalized metric spaces have a compatible symmetric topology
Tomonari Suzuki; Badriah Alamri; Misako Kikkawa
Open Mathematics (2015)
- Volume: 13, Issue: 1, page 2301-2309
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topTomonari Suzuki, Badriah Alamri, and Misako Kikkawa. "Only 3-generalized metric spaces have a compatible symmetric topology." Open Mathematics 13.1 (2015): 2301-2309. <http://eudml.org/doc/271766>.
@article{TomonariSuzuki2015,
abstract = {We prove that every 3-generalized metric space is metrizable. We also show that for any ʋ with ʋ ≥ 4, not every ʋ-generalized metric space has a compatible symmetric topology.},
author = {Tomonari Suzuki, Badriah Alamri, Misako Kikkawa},
journal = {Open Mathematics},
keywords = {ʋ-generalized metric space; Metrizability; Topology; Symmetrizable; Semimetrizable; fixed point; contraction; generalized metric space},
language = {eng},
number = {1},
pages = {2301-2309},
title = {Only 3-generalized metric spaces have a compatible symmetric topology},
url = {http://eudml.org/doc/271766},
volume = {13},
year = {2015},
}
TY - JOUR
AU - Tomonari Suzuki
AU - Badriah Alamri
AU - Misako Kikkawa
TI - Only 3-generalized metric spaces have a compatible symmetric topology
JO - Open Mathematics
PY - 2015
VL - 13
IS - 1
SP - 2301
EP - 2309
AB - We prove that every 3-generalized metric space is metrizable. We also show that for any ʋ with ʋ ≥ 4, not every ʋ-generalized metric space has a compatible symmetric topology.
LA - eng
KW - ʋ-generalized metric space; Metrizability; Topology; Symmetrizable; Semimetrizable; fixed point; contraction; generalized metric space
UR - http://eudml.org/doc/271766
ER -
References
top- [1] B. Alamri, T. Suzuki and L. A. Khan, Caristi’s fixed point theorem and Subrahmanyam’s fixed point theorem in ʋ-generalized metric spaces, J. Funct. Spaces, 2015, Art. ID 709391, 6 pp. [WoS] Zbl1321.54055
- [2] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57 (2000), 31–37. MR1771669 Zbl0963.54031
- [3] G. Gruenhage, “Generalized metric spaces” in Handbook of set-theoretic topology, 1984, pp. 423–501, North-Holland, Amsterdam. MR0776629
- [4] Z. Kadelburg and S. Radenovi´c, On generalized metric spaces: A survey, TWMS J. Pure Appl. Math., 5 (2014), 3–13. Zbl1305.54040
- [5] W. A. Kirk and N. Shahzad, Generalized metrics and Caristi’s theorem, Fixed Point Theory Appl., 2013, 2013:129. MR3068651 [WoS]
- [6] T. Suzuki, Generalized metric spaces do not have the compatible topology, Abstr. Appl. Anal., 2014, Art. ID 458098, 5 pp. [WoS]
- [7] S. Willard, General Topology, Dover (2004). MR2048350
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.