The classification of partially symmetric 3-braid links

Alexander Stoimenov

Open Mathematics (2015)

  • Volume: 13, Issue: 1
  • ISSN: 2391-5455

Abstract

top
We classify 3-braid links which are amphicheiral as unoriented links, including a new proof of Birman- Menasco’s result for the (orientedly) amphicheiral 3-braid links. Then we classify the partially invertible 3-braid links.

How to cite

top

Alexander Stoimenov. "The classification of partially symmetric 3-braid links." Open Mathematics 13.1 (2015): null. <http://eudml.org/doc/271773>.

@article{AlexanderStoimenov2015,
abstract = {We classify 3-braid links which are amphicheiral as unoriented links, including a new proof of Birman- Menasco’s result for the (orientedly) amphicheiral 3-braid links. Then we classify the partially invertible 3-braid links.},
author = {Alexander Stoimenov},
journal = {Open Mathematics},
keywords = {Jones polynomial; 3-braid link; Amphicheira; Invertible; Semiadequate link; Genus},
language = {eng},
number = {1},
pages = {null},
title = {The classification of partially symmetric 3-braid links},
url = {http://eudml.org/doc/271773},
volume = {13},
year = {2015},
}

TY - JOUR
AU - Alexander Stoimenov
TI - The classification of partially symmetric 3-braid links
JO - Open Mathematics
PY - 2015
VL - 13
IS - 1
SP - null
AB - We classify 3-braid links which are amphicheiral as unoriented links, including a new proof of Birman- Menasco’s result for the (orientedly) amphicheiral 3-braid links. Then we classify the partially invertible 3-braid links.
LA - eng
KW - Jones polynomial; 3-braid link; Amphicheira; Invertible; Semiadequate link; Genus
UR - http://eudml.org/doc/271773
ER -

References

top
  1.  
  2. [1] Bennequin, D. , Entrelacements et équations de Pfaff , Soc. Math. de France, Astérisque 107-108 (1983), 87–161. 
  3. [2] Birman, J. S. , On the Jones polynomial of closed 3-braids, Invent. Math. 1985, 81(2), 287–294. Zbl0588.57005
  4. [3] -"- , New points of view in knot theory, Bull. Amer. Math. Soc. 1993, 28(2), 253–287. Zbl0785.57001
  5. [4] -"- and Menasco, W. W. , Studying knots via braids III: Classifying knots which are closed 3 braids, Pacific J. Math. 1993, 161, 25–113. Zbl0813.57010
  6. [5] Brandt, R. D. , Lickorish, W. B. R. and Millett, K. , A polynomial invariant for unoriented knots and links, Inv. Math. 1986, 74, 563–573. Zbl0595.57009
  7. [6] Cromwell, P. R. , Homogeneous links, J. London Math. Soc. (series 2) 1989, 39, 535–552. Zbl0685.57004
  8. [7] Dasbach, O. and Gemein, B. , A Faithful Representation of the Singular Braid Monoid on Three Strands, Proceedings of the International Conference on Knot Theory “Knots in Hellas, 98", Series on Knots and Everything 24, World Scientific, 2000, 48–58. Zbl0973.57004
  9. [8] -"- and Lin, X.-S. , A volume-ish theorem for the Jones polynomial of alternating knots, Pacific J. Math. 2007, 231(2), 279–291. Zbl1166.57002
  10. [9] -"- and " , On the Head and the Tail of the Colored Jones Polynomial, Compositio Math. 2006, 142(5), 1332–1342. Zbl1106.57008
  11. [10] Freyd, P. , Hoste, J. , Lickorish, W. B. R. , Millett, K. , Ocneanu, A. and Yetter, D. , A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. 1985, 12, 239–246. [Crossref] Zbl0572.57002
  12. [11] Futer, D. , Kalfagianni, E. and Purcell, J. , Cusp areas of Farey manifolds and applications to knot theory, Int. Math. Res. Not. 2010, 23, 4434–4497. [WoS] Zbl1227.57023
  13. [12] Gabai, D. , The Murasugi sum is a natural geometric operation II, Combinatorial methods in topology and algebraic geometry (Rochester, N.Y., 1982), 93–100, Contemp. Math. 44, Amer. Math. Soc., Providence, RI, 1985. 
  14. [13] -"- , The Murasugi sum is a natural geometric operation, Low-dimensional topology (San Francisco, Calif., 1981), Contemp. Math. 20, 131–143, Amer. Math. Soc., Providence, RI, 1983. 
  15. [14] Hosokawa, F. , On r-polynomials of links, Osaka Math. J. 1958, 10, 273–282. Zbl0105.17404
  16. [15] Hoste, J. , The first coefficient of the Conway polynomial, Proc. Amer. Math. Soc. 1985, 95(2), 299–302. Zbl0576.57005
  17. [16] Jones, V. F. R. , Hecke algebra representations of of braid groups and link polynomials, Ann. of Math. 1987, 126, 335–388. Zbl0631.57005
  18. [17] Kanenobu, T. , Relations between the Jones and Q polynomials of 2-bridge and 3-braid links, Math. Ann. 1989, 285, 115–124. Zbl0651.57006
  19. [18] Kauffman, L. H. , State models and the Jones polynomial, Topology 1987, 26, 395–407. [Crossref] 
  20. [19] Kirby, R. (ed.), Problems of low-dimensional topology, book available on http://math.berkeley.edu/˜kirby. Zbl0394.57002
  21. [20] Lickorish, W. B. R. and Millett, K. C. , The reversing result for the Jones polynomial, Pacific J. Math. 1986, 124(1), 173–176. Zbl0553.57001
  22. [21] -"- and Thistlethwaite, M. B. , Some links with non-trivial polynomials and their crossing numbers, Comment. Math. Helv. 1988, 63, 527–539. Zbl0686.57002
  23. [22] Menasco, W. W. and Thistlethwaite, M. B. , The Tait flyping conjecture, Bull. Amer. Math. Soc. 25 (2) (1991), 403–412. [Crossref] Zbl0745.57002
  24. [23] Murakami, J. , The Kauffman polynomial of links and representation theory, Osaka J. Math. 1987, 24(4), 745–758. Zbl0666.57006
  25. [24] Przytycki, J. and Traczyk, P. , Invariants of links of Conway type, Kobe J. Math. 1988, 4(2), 115–139. Zbl0655.57002
  26. [25] Rolfsen, D. , Knots and links, Publish or Parish, 1976. 
  27. [26] Schreier, O. , Über die Gruppen AaBb D 1, Abh. Math. Sem. Univ. Hamburg 1924, 3, 167–169. [Crossref] Zbl50.0070.01
  28. [27] Stoimenow, A. , The skein polynomial of closed 3-braids, J. Reine Angew. Math. 2003, 564, 167–180. Zbl1042.57006
  29. [28] -"- , Properties of closed 3-braids, preprint math.GT/0606435. 
  30. [29] -"- , Coefficients and non-triviality of the Jones polynomial, J. Reine Angew. Math. 2011, 657, 1–55. [WoS] Zbl1257.57010
  31. [30] Thistlethwaite, M. B. , On the Kauffman polynomial of an adequate link, Invent. Math. 93(2) (1988), 285–296. [Crossref] Zbl0645.57007
  32. [31] -"- , A spanning tree expansion for the Jones polynomial, Topology 1987, 26, 297–309. Zbl0622.57003
  33. [32] Xu, P. , The genus of closed 3-braids, J. Knot Theory Ramifications 1992, 1(3), 303–326. Zbl0773.57007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.