Essential spectra of weighted composition operators with hyperbolic symbols

Olli Hyvärinen; Ilmari Nieminen

Concrete Operators (2015)

  • Volume: 2, Issue: 1, page 110-119, electronic only
  • ISSN: 2299-3282

Abstract

top
In this paperwe study both the spectra and the essential spectra ofweighted composition operators on Hardy spaces Hp(ⅅ), standard weighted Bergman spaces Apα(ⅅ) and weighted H∞1-type spaces when the symbols are of hyperbolic type

How to cite

top

Olli Hyvärinen, and Ilmari Nieminen. "Essential spectra of weighted composition operators with hyperbolic symbols." Concrete Operators 2.1 (2015): 110-119, electronic only. <http://eudml.org/doc/271776>.

@article{OlliHyvärinen2015,
abstract = {In this paperwe study both the spectra and the essential spectra ofweighted composition operators on Hardy spaces Hp(ⅅ), standard weighted Bergman spaces Apα(ⅅ) and weighted H∞1-type spaces when the symbols are of hyperbolic type},
author = {Olli Hyvärinen, Ilmari Nieminen},
journal = {Concrete Operators},
keywords = {Weighted composition operator; spectrum; essential spectrum; Hardy spaces; weighted Bergman spaces; weighted composition operator; weighted Bergman spaces},
language = {eng},
number = {1},
pages = {110-119, electronic only},
title = {Essential spectra of weighted composition operators with hyperbolic symbols},
url = {http://eudml.org/doc/271776},
volume = {2},
year = {2015},
}

TY - JOUR
AU - Olli Hyvärinen
AU - Ilmari Nieminen
TI - Essential spectra of weighted composition operators with hyperbolic symbols
JO - Concrete Operators
PY - 2015
VL - 2
IS - 1
SP - 110
EP - 119, electronic only
AB - In this paperwe study both the spectra and the essential spectra ofweighted composition operators on Hardy spaces Hp(ⅅ), standard weighted Bergman spaces Apα(ⅅ) and weighted H∞1-type spaces when the symbols are of hyperbolic type
LA - eng
KW - Weighted composition operator; spectrum; essential spectrum; Hardy spaces; weighted Bergman spaces; weighted composition operator; weighted Bergman spaces
UR - http://eudml.org/doc/271776
ER -

References

top
  1. [1] Y.A. Abramovich, C.D. Aliprantis, An invitation to operator theory, Graduate Studies inMathematics, Vol. 50, AmericanMathematical Society, Rhode Island, 2002. 
  2. [2] K. Bierstedt, W. Summers, Biduals of weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 54 (1993), 70–79. Zbl0801.46021
  3. [3] J. Bonet, P. Domanski, M. Lindström, Weakly compact composition operators on analytic vector-valued function spaces, Ann. Acad. Sci. Fenn. Math. 26 (2001), 233–248. Zbl1075.47506
  4. [4] P. Bourdon, Spectra of some composition operators and associated weighted composition operators, J. Operator Theory 67 (2012), 537–560. Zbl1262.47036
  5. [5] P. Bourdon, Spectra of composition operators with symbols in S(2), arXiv:1401.2680 [math.FA] Zbl04.0324.01
  6. [6] C. Cowen, Composition operators on H2, J. Operator Theory 9 (1983), 77–106. Zbl0504.47032
  7. [7] C. Cowen, B. MacCluer, Composition operators on spaces of analytic functions, CRC Press, Boca Raton, 1995. Zbl0873.47017
  8. [8] C. Cowen, E. Ko, D. Thompson, F. Tian, Spectra of some weighted composition operators on H2, arXiv:1405.5173 [math.FA] 
  9. [9] P. Domanski, M. Lindström, Sets of interpolation and sampling for weighted Banach spaces of holomorphic functions, Ann. Polon. Math. 79 (2002), 233–264. Zbl1060.30045
  10. [10] P.L. Duren, Theory of Hp spaces, Academic Press, 1970. Zbl0215.20203
  11. [11] P.L. Duren, A. Schuster, Bergman spaces,Mathematical Surveys and Monographs Vol. 100, AmericanMathematical Society, 2004. 
  12. [12] G. Gunatillake, Invertible weighted composition operators, J. Funct. Anal. 261 (2011), 831–860. Zbl1218.47037
  13. [13] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman spaces, Springer, 2000. Zbl0955.32003
  14. [14] O. Hyvärinen, M. Lindström, I. Nieminen, E. Saukko, Spectra of weighted composition operators with automorphic symbols, J. Funct. Anal. 265 (2013), 1749–1777. Zbl1325.47054
  15. [15] H. Kamowitz, The spectra of a class of operators on the disc algebra, Indiana Univ. Math. J. 27 (1978), 581–610. Zbl0385.47016
  16. [16] M. Möller, On the essential spectrum of a class of operators in Hilbert space, Math. Nachr. 194 (1998), 185–196. Zbl0919.47004
  17. [17] V. Müller, Spectral theory of linear operators, Birkhäuser, 2003. Zbl1017.47001
  18. [18] J.H. Shapiro, Composition operators and classical function theory, Springer, 1993. Zbl0791.30033

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.