# Essential spectra of weighted composition operators with hyperbolic symbols

Olli Hyvärinen; Ilmari Nieminen

Concrete Operators (2015)

- Volume: 2, Issue: 1, page 110-119, electronic only
- ISSN: 2299-3282

## Access Full Article

top## Abstract

top## How to cite

topOlli Hyvärinen, and Ilmari Nieminen. "Essential spectra of weighted composition operators with hyperbolic symbols." Concrete Operators 2.1 (2015): 110-119, electronic only. <http://eudml.org/doc/271776>.

@article{OlliHyvärinen2015,

abstract = {In this paperwe study both the spectra and the essential spectra ofweighted composition operators on Hardy spaces Hp(ⅅ), standard weighted Bergman spaces Apα(ⅅ) and weighted H∞1-type spaces when the symbols are of hyperbolic type},

author = {Olli Hyvärinen, Ilmari Nieminen},

journal = {Concrete Operators},

keywords = {Weighted composition operator; spectrum; essential spectrum; Hardy spaces; weighted Bergman
spaces; weighted composition operator; weighted Bergman spaces},

language = {eng},

number = {1},

pages = {110-119, electronic only},

title = {Essential spectra of weighted composition operators with hyperbolic symbols},

url = {http://eudml.org/doc/271776},

volume = {2},

year = {2015},

}

TY - JOUR

AU - Olli Hyvärinen

AU - Ilmari Nieminen

TI - Essential spectra of weighted composition operators with hyperbolic symbols

JO - Concrete Operators

PY - 2015

VL - 2

IS - 1

SP - 110

EP - 119, electronic only

AB - In this paperwe study both the spectra and the essential spectra ofweighted composition operators on Hardy spaces Hp(ⅅ), standard weighted Bergman spaces Apα(ⅅ) and weighted H∞1-type spaces when the symbols are of hyperbolic type

LA - eng

KW - Weighted composition operator; spectrum; essential spectrum; Hardy spaces; weighted Bergman
spaces; weighted composition operator; weighted Bergman spaces

UR - http://eudml.org/doc/271776

ER -

## References

top- [1] Y.A. Abramovich, C.D. Aliprantis, An invitation to operator theory, Graduate Studies inMathematics, Vol. 50, AmericanMathematical Society, Rhode Island, 2002.
- [2] K. Bierstedt, W. Summers, Biduals of weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 54 (1993), 70–79. Zbl0801.46021
- [3] J. Bonet, P. Domanski, M. Lindström, Weakly compact composition operators on analytic vector-valued function spaces, Ann. Acad. Sci. Fenn. Math. 26 (2001), 233–248. Zbl1075.47506
- [4] P. Bourdon, Spectra of some composition operators and associated weighted composition operators, J. Operator Theory 67 (2012), 537–560. Zbl1262.47036
- [5] P. Bourdon, Spectra of composition operators with symbols in S(2), arXiv:1401.2680 [math.FA] Zbl04.0324.01
- [6] C. Cowen, Composition operators on H2, J. Operator Theory 9 (1983), 77–106. Zbl0504.47032
- [7] C. Cowen, B. MacCluer, Composition operators on spaces of analytic functions, CRC Press, Boca Raton, 1995. Zbl0873.47017
- [8] C. Cowen, E. Ko, D. Thompson, F. Tian, Spectra of some weighted composition operators on H2, arXiv:1405.5173 [math.FA]
- [9] P. Domanski, M. Lindström, Sets of interpolation and sampling for weighted Banach spaces of holomorphic functions, Ann. Polon. Math. 79 (2002), 233–264. Zbl1060.30045
- [10] P.L. Duren, Theory of Hp spaces, Academic Press, 1970. Zbl0215.20203
- [11] P.L. Duren, A. Schuster, Bergman spaces,Mathematical Surveys and Monographs Vol. 100, AmericanMathematical Society, 2004.
- [12] G. Gunatillake, Invertible weighted composition operators, J. Funct. Anal. 261 (2011), 831–860. Zbl1218.47037
- [13] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman spaces, Springer, 2000. Zbl0955.32003
- [14] O. Hyvärinen, M. Lindström, I. Nieminen, E. Saukko, Spectra of weighted composition operators with automorphic symbols, J. Funct. Anal. 265 (2013), 1749–1777. Zbl1325.47054
- [15] H. Kamowitz, The spectra of a class of operators on the disc algebra, Indiana Univ. Math. J. 27 (1978), 581–610. Zbl0385.47016
- [16] M. Möller, On the essential spectrum of a class of operators in Hilbert space, Math. Nachr. 194 (1998), 185–196. Zbl0919.47004
- [17] V. Müller, Spectral theory of linear operators, Birkhäuser, 2003. Zbl1017.47001
- [18] J.H. Shapiro, Composition operators and classical function theory, Springer, 1993. Zbl0791.30033

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.