Shells of monotone curves
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 3, page 677-699
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMikeš, Josef, and Strambach, Karl. "Shells of monotone curves." Czechoslovak Mathematical Journal 65.3 (2015): 677-699. <http://eudml.org/doc/271796>.
@article{Mikeš2015,
abstract = {We determine in $\mathbb \{R\}^n$ the form of curves $C$ corresponding to strictly monotone functions as well as the components of affine connections $\nabla $ for which any image of $C$ under a compact-free group $\Omega $ of affinities containing the translation group is a geodesic with respect to $\nabla $. Special attention is paid to the case that $\Omega $ contains many dilatations or that $C$ is a curve in $\mathbb \{R\}^3$. If $C$ is a curve in $\mathbb \{R\}^3$ and $\Omega $ is the translation group then we calculate not only the components of the curvature and the Weyl tensor but we also decide when $\nabla $ yields a flat or metrizable space and compute the corresponding metric tensor.},
author = {Mikeš, Josef, Strambach, Karl},
journal = {Czechoslovak Mathematical Journal},
keywords = {geodesic; shell of a curve; affine connection; (pseudo-)Riemannian metric; projective equivalence},
language = {eng},
number = {3},
pages = {677-699},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Shells of monotone curves},
url = {http://eudml.org/doc/271796},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Mikeš, Josef
AU - Strambach, Karl
TI - Shells of monotone curves
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 3
SP - 677
EP - 699
AB - We determine in $\mathbb {R}^n$ the form of curves $C$ corresponding to strictly monotone functions as well as the components of affine connections $\nabla $ for which any image of $C$ under a compact-free group $\Omega $ of affinities containing the translation group is a geodesic with respect to $\nabla $. Special attention is paid to the case that $\Omega $ contains many dilatations or that $C$ is a curve in $\mathbb {R}^3$. If $C$ is a curve in $\mathbb {R}^3$ and $\Omega $ is the translation group then we calculate not only the components of the curvature and the Weyl tensor but we also decide when $\nabla $ yields a flat or metrizable space and compute the corresponding metric tensor.
LA - eng
KW - geodesic; shell of a curve; affine connection; (pseudo-)Riemannian metric; projective equivalence
UR - http://eudml.org/doc/271796
ER -
References
top- Betten, D., 10.1515/advg.2005.5.1.107, Adv. Geom. 5 (2005), 107-118. (2005) Zbl1067.51007MR2110464DOI10.1515/advg.2005.5.1.107
- Betten, D., Some classes of topological 3-spaces, German Result. Math. 12 (1987), 37-61. (1987) Zbl0631.51006MR0911460
- Cartan, E., Les espaces riemanniens symétriques, French Verh. Internat. Math.-Kongr. 1 (1932), 152-161. (1932) Zbl0006.42102
- Eisenhart, L. P., Non-Riemannian geometry, American Mathematical Society Colloquium Publications 8 American Mathematical Society, Providence (1990). (1990) MR1466961
- Gerlich, G., 10.1515/advg.2005.5.2.265, Adv. Geom. 5 (2005), 265-278. (2005) Zbl1080.51007MR2131819DOI10.1515/advg.2005.5.2.265
- Gerlich, G., 10.1007/s00013-002-8318-x, Arch. Math. 79 (2002), 317-320. (2002) Zbl1022.51012MR1944956DOI10.1007/s00013-002-8318-x
- Hinterleitner, I., Mikeš, J., Geodesic mappings onto Weyl spaces, Proc. 8th Int. Conf. on Appl. Math (APLIMAT 2009) Bratislava 423-430.
- Irving, R. S., Integers, Polynomials, and Rings. A Course in Algebra, Undergraduate Texts in Mathematics Springer, New York (2004). (2004) Zbl1046.00002MR2025456
- Kagan, V. F., Subprojective Spaces, Russian Bibliothek der Russischen Wissenschaften Mathematik, Mechanik, Physik, Astronomie Staatsverlag für Physikalisch-Mathematische Literatur, Moskva (1961). (1961) MR0131242
- Kamke, E., Differentialgleichungen. Lösungsmethoden und Lösungen. 1. Gewöhnliche Differentialgleichungen, German Akademische Verlagsgesellschaft, Leipzig (1942). (1942) Zbl0026.31801
- Kamke, E., Differentialgleichungen Reeller Funktionen, Akademische Verlagsgesellschaft, Leipzig (1930), German. (1930)
- Mikeš, J., 10.1007/BF02365193, J. Math. Sci., New York 78 (1996), 311-333. (1996) MR1384327DOI10.1007/BF02365193
- Mikeš, J., Strambach, K., Grünwald shift spaces, Publ. Math. 83 (2013), 85-96. (2013) Zbl1289.51008MR3081228
- Mikeš, J., Strambach, K., 10.1007/s00025-008-0296-2, Result. Math. 53 (2009), 153-172. (2009) MR2481410DOI10.1007/s00025-008-0296-2
- Mikeš, J., Vanžurová, A., Hinterleitner, I., Geodesic Mappings and Some Generalizations, Palacký University, Faculty of Science, Olomouc (2009). (2009) Zbl1222.53002MR2682926
- Norden, A. P., Spaces with Affine Connection, Russian Nauka Moskva (1976). (1976) Zbl0925.53007MR0467565
- Petrov, A. Z., New Methods in the General Theory of Relativity, Russian Hauptredaktion für Physikalisch-Mathematische Literatur Nauka, Moskva (1966). (1966) MR0207365
- Salzmann, H., Betten, D., Grundhöfer, T., Hähl, H., Löwen, R., Stroppel, M., Compact Projective Planes. With an Introduction to Octonion Geometry, De Gruyter Expositions in Mathematics 21 De Gruyter, Berlin (1995). (1995) MR1384300
- Sinyukov, N. S., Geodesic Mappings of Riemannian Spaces, Russian Nauka Moskva (1979). (1979) Zbl0637.53020MR0552022
- Yano, K., Bochner, S., Curvature and Betti Numbers, Annals of Mathematics Studies 32 Princeton University Press 9, Princeton (1953). (1953) Zbl0051.39402MR0062505
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.