Neutral set differential equations
Umber Abbas; Vasile Lupulescu; Donald O'Regan; Awais Younus
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 3, page 593-615
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAbbas, Umber, et al. "Neutral set differential equations." Czechoslovak Mathematical Journal 65.3 (2015): 593-615. <http://eudml.org/doc/271801>.
@article{Abbas2015,
abstract = {The aim of this paper is to establish an existence and uniqueness result for a class of the set functional differential equations of neutral type\begin\{equation*\} \{\left\lbrace \begin\{array\}\{ll\} D\_\{H\}X(t)=F(t,X\_\{t\},D\_\{H\}X\_\{t\}), \\ \hspace\{2.5pt\}X|\_\{[-r,0]\}=\Psi , \end\{array\}\right.\} \end\{equation*\}
where $F\colon [0,b]\times \mathcal \{C\}_\{0\}\times \mathfrak \{L\}_\{0\}^\{1\}\rightarrow K_\{c\}(E)$ is a given function, $K_\{c\}(E)$ is the family of all nonempty compact and convex subsets of a separable Banach space $E$, $\mathcal \{C\}_\{0\}$ denotes the space of all continuous set-valued functions $X$ from $[-r,0]$ into $K_\{c\}(E)$, $\mathfrak \{L\}_\{0\}^\{1\}$ is the space of all integrally bounded set-valued functions $X\colon [-r,0]\rightarrow K_\{c\}(E)$, $\Psi \in \mathcal \{C\}_\{0\}$ and $D_\{H\}$ is the Hukuhara derivative. The continuous dependence of solutions on initial data and parameters is also studied.},
author = {Abbas, Umber, Lupulescu, Vasile, O'Regan, Donald, Younus, Awais},
journal = {Czechoslovak Mathematical Journal},
keywords = {neutral type; existence; uniqueness; continous dependence},
language = {eng},
number = {3},
pages = {593-615},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Neutral set differential equations},
url = {http://eudml.org/doc/271801},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Abbas, Umber
AU - Lupulescu, Vasile
AU - O'Regan, Donald
AU - Younus, Awais
TI - Neutral set differential equations
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 3
SP - 593
EP - 615
AB - The aim of this paper is to establish an existence and uniqueness result for a class of the set functional differential equations of neutral type\begin{equation*} {\left\lbrace \begin{array}{ll} D_{H}X(t)=F(t,X_{t},D_{H}X_{t}), \\ \hspace{2.5pt}X|_{[-r,0]}=\Psi , \end{array}\right.} \end{equation*}
where $F\colon [0,b]\times \mathcal {C}_{0}\times \mathfrak {L}_{0}^{1}\rightarrow K_{c}(E)$ is a given function, $K_{c}(E)$ is the family of all nonempty compact and convex subsets of a separable Banach space $E$, $\mathcal {C}_{0}$ denotes the space of all continuous set-valued functions $X$ from $[-r,0]$ into $K_{c}(E)$, $\mathfrak {L}_{0}^{1}$ is the space of all integrally bounded set-valued functions $X\colon [-r,0]\rightarrow K_{c}(E)$, $\Psi \in \mathcal {C}_{0}$ and $D_{H}$ is the Hukuhara derivative. The continuous dependence of solutions on initial data and parameters is also studied.
LA - eng
KW - neutral type; existence; uniqueness; continous dependence
UR - http://eudml.org/doc/271801
ER -
References
top- Abbas, U., Lupulescu, V., Set functional differential equations, Commun. Appl. Nonlinear Anal. 18 (2011), 97-110. (2011) Zbl1243.34108MR2815882
- Beer, G., Topologies on Closed and Closed Convex Sets, Mathematics and Its Applications 268 Kluwer Academic Publishers, Dordrecht (1993). (1993) Zbl0792.54008MR1269778
- Coddington, E. A., Levinson, N., Theory of Ordinary Differential Equations, McGraw-Hill Book Company, New York (1955). (1955) Zbl0064.33002MR0069338
- Das, P. C., Parhi, N., 10.1016/0022-247X(71)90236-8, J. Math. Anal. Appl. 35 (1971), 67-82. (1971) Zbl0216.11903MR0280830DOI10.1016/0022-247X(71)90236-8
- Blasi, F. S. de, Iervolino, F., Equazioni differenziali con soluzioni a valore compatto convesso, Boll. Unione Mat. Ital., IV. Ser. 2 Italian (1969), 491-501. (1969) Zbl0195.38501
- Blasi, F. S. de, Lakshmikantham, V., Bhaskar, T. Gnana, An existence theorem for set differential inclusions in a semilinear metric space, Control Cybern. 36 (2007), 571-582. (2007) MR2376040
- Debreu, G., Integration of correspondences, Proc. 5th Berkeley Symp. Math. Stat. Probab. (Univ. Calif. 1965/66). Vol. 2: Contributions to Probability Theory, Part 1 Univ. California Press, Berkeley, Calif. (1967), 351-372. (1967) Zbl0211.52803MR0228252
- Hale, J. K., Lunel, S. M. Verduyn, 10.1007/978-1-4612-4342-7_3, Applied Mathematical Sciences 99 Springer, New York (1993). (1993) MR1243878DOI10.1007/978-1-4612-4342-7_3
- Himmelberg, C. J., Precompact contraction of metric uniformities, and the continuity of , Rend. Semin. Mat. Univ. Padova 50 (1973), 185-188. (1973) MR0355958
- Hu, S., Papageorgiou, N. S., Handbook of Multivalued Analysis. Vol. I: Theory, Mathematics and Its Applications 419 Kluwer Academic Publishers, Dordrecht (1997). (1997) MR1485775
- Kisielewicz, M., 10.1016/0022-247X(83)90248-2, J. Math. Anal. Appl. 97 (1983), 229-244. (1983) Zbl0524.34068MR0721240DOI10.1016/0022-247X(83)90248-2
- Kisielewicz, M., 10.1016/0022-247X(80)90220-6, J. Math. Anal. Appl. 78 (1980), 173-182. (1980) Zbl0461.34009MR0595774DOI10.1016/0022-247X(80)90220-6
- Lakshmikantham, V., Bhaskar, T. Gnana, Devi, J. Vasundhara, Theory of Set Differential Equations in Metric Spaces, Cambridge Scientific Publishers, Cambridge (2006). (2006) MR2438229
- Lakshmikantham, V., Tolstonogov, A. A., 10.1016/S0362-546X(03)00228-1, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 55 (2003), 255-268. (2003) Zbl1035.34064MR2007473DOI10.1016/S0362-546X(03)00228-1
- Li, S., Ogura, Y., Kreinovich, V., Limit Theorems and Applications of Set-valued and Fuzzy Set-valued Random Variables, Theory and Decision Library. Series B: Mathematical and Statistical Methods 43 Kluwer Academic Publishers Group, Dordrecht (2002). (2002) MR2039695
- Pinto, A. J. B. Lopes, Blasi, F. S. De, Iervolino, F., Uniqueness and existence theorems for differential equations with compact convex valued solutions, Boll. Unione Mat. Ital., IV. Ser. 3 (1970), 47-54. (1970) MR0259306
- Lupulescu, V., Successive approximations to solutions of set differential equations in Banach spaces, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 15 (2008), 391-401. (2008) Zbl1153.34037MR2406754
- Malinowski, M. T., 10.1016/j.amc.2012.06.019, Appl. Math. Comput. 219 (2012), 289-305. (2012) Zbl1297.34073MR2949593DOI10.1016/j.amc.2012.06.019
- Malinowski, M. T., 10.1016/j.amc.2012.03.027, Appl. Math. Comput. 218 (2012), 9427-9437. (2012) Zbl1252.34071MR2923039DOI10.1016/j.amc.2012.03.027
- Malinowski, M. T., Michta, M., 10.1016/j.na.2009.08.015, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 1247-1256. (2010) Zbl1184.60018MR2577525DOI10.1016/j.na.2009.08.015
- Markov, S. M., Existence and uniqueness of solutions of the interval differential equation , C. R. Acad. Bulg. Sci. 31 (1978), 1519-1522. (1978) MR0548735
- Plotnikov, V. A., Rashkov, P. I., Averaging in differential equations with Hukuhara derivative and delay, Funct. Differ. Equ. 8 (2001), 371-381. (2001) Zbl1046.34089MR1950981
- Tolstonogov, A., Differential Inclusions in a Banach Space, Mathematics and Its Applications 524 Kluwer Academic Publishers, Dordrecht 2000. Translated from Russian. Zbl1021.34002MR1888331
- Devi, J. Vasundhara, Vatsala, A. S., A study of set differential equations with delay, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 11 (2004), 287-300. (2004) MR2035268
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.