Neutral set differential equations

Umber Abbas; Vasile Lupulescu; Donald O'Regan; Awais Younus

Czechoslovak Mathematical Journal (2015)

  • Volume: 65, Issue: 3, page 593-615
  • ISSN: 0011-4642

Abstract

top
The aim of this paper is to establish an existence and uniqueness result for a class of the set functional differential equations of neutral type D H X ( t ) = F ( t , X t , D H X t ) , X | [ - r , 0 ] = Ψ , where F : [ 0 , b ] × 𝒞 0 × 𝔏 0 1 K c ( E ) is a given function, K c ( E ) is the family of all nonempty compact and convex subsets of a separable Banach space E , 𝒞 0 denotes the space of all continuous set-valued functions X from [ - r , 0 ] into K c ( E ) , 𝔏 0 1 is the space of all integrally bounded set-valued functions X : [ - r , 0 ] K c ( E ) , Ψ 𝒞 0 and D H is the Hukuhara derivative. The continuous dependence of solutions on initial data and parameters is also studied.

How to cite

top

Abbas, Umber, et al. "Neutral set differential equations." Czechoslovak Mathematical Journal 65.3 (2015): 593-615. <http://eudml.org/doc/271801>.

@article{Abbas2015,
abstract = {The aim of this paper is to establish an existence and uniqueness result for a class of the set functional differential equations of neutral type\begin\{equation*\} \{\left\lbrace \begin\{array\}\{ll\} D\_\{H\}X(t)=F(t,X\_\{t\},D\_\{H\}X\_\{t\}), \\ \hspace\{2.5pt\}X|\_\{[-r,0]\}=\Psi , \end\{array\}\right.\} \end\{equation*\} where $F\colon [0,b]\times \mathcal \{C\}_\{0\}\times \mathfrak \{L\}_\{0\}^\{1\}\rightarrow K_\{c\}(E)$ is a given function, $K_\{c\}(E)$ is the family of all nonempty compact and convex subsets of a separable Banach space $E$, $\mathcal \{C\}_\{0\}$ denotes the space of all continuous set-valued functions $X$ from $[-r,0]$ into $K_\{c\}(E)$, $\mathfrak \{L\}_\{0\}^\{1\}$ is the space of all integrally bounded set-valued functions $X\colon [-r,0]\rightarrow K_\{c\}(E)$, $\Psi \in \mathcal \{C\}_\{0\}$ and $D_\{H\}$ is the Hukuhara derivative. The continuous dependence of solutions on initial data and parameters is also studied.},
author = {Abbas, Umber, Lupulescu, Vasile, O'Regan, Donald, Younus, Awais},
journal = {Czechoslovak Mathematical Journal},
keywords = {neutral type; existence; uniqueness; continous dependence},
language = {eng},
number = {3},
pages = {593-615},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Neutral set differential equations},
url = {http://eudml.org/doc/271801},
volume = {65},
year = {2015},
}

TY - JOUR
AU - Abbas, Umber
AU - Lupulescu, Vasile
AU - O'Regan, Donald
AU - Younus, Awais
TI - Neutral set differential equations
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 3
SP - 593
EP - 615
AB - The aim of this paper is to establish an existence and uniqueness result for a class of the set functional differential equations of neutral type\begin{equation*} {\left\lbrace \begin{array}{ll} D_{H}X(t)=F(t,X_{t},D_{H}X_{t}), \\ \hspace{2.5pt}X|_{[-r,0]}=\Psi , \end{array}\right.} \end{equation*} where $F\colon [0,b]\times \mathcal {C}_{0}\times \mathfrak {L}_{0}^{1}\rightarrow K_{c}(E)$ is a given function, $K_{c}(E)$ is the family of all nonempty compact and convex subsets of a separable Banach space $E$, $\mathcal {C}_{0}$ denotes the space of all continuous set-valued functions $X$ from $[-r,0]$ into $K_{c}(E)$, $\mathfrak {L}_{0}^{1}$ is the space of all integrally bounded set-valued functions $X\colon [-r,0]\rightarrow K_{c}(E)$, $\Psi \in \mathcal {C}_{0}$ and $D_{H}$ is the Hukuhara derivative. The continuous dependence of solutions on initial data and parameters is also studied.
LA - eng
KW - neutral type; existence; uniqueness; continous dependence
UR - http://eudml.org/doc/271801
ER -

References

top
  1. Abbas, U., Lupulescu, V., Set functional differential equations, Commun. Appl. Nonlinear Anal. 18 (2011), 97-110. (2011) Zbl1243.34108MR2815882
  2. Beer, G., Topologies on Closed and Closed Convex Sets, Mathematics and Its Applications 268 Kluwer Academic Publishers, Dordrecht (1993). (1993) Zbl0792.54008MR1269778
  3. Coddington, E. A., Levinson, N., Theory of Ordinary Differential Equations, McGraw-Hill Book Company, New York (1955). (1955) Zbl0064.33002MR0069338
  4. Das, P. C., Parhi, N., 10.1016/0022-247X(71)90236-8, J. Math. Anal. Appl. 35 (1971), 67-82. (1971) Zbl0216.11903MR0280830DOI10.1016/0022-247X(71)90236-8
  5. Blasi, F. S. de, Iervolino, F., Equazioni differenziali con soluzioni a valore compatto convesso, Boll. Unione Mat. Ital., IV. Ser. 2 Italian (1969), 491-501. (1969) Zbl0195.38501
  6. Blasi, F. S. de, Lakshmikantham, V., Bhaskar, T. Gnana, An existence theorem for set differential inclusions in a semilinear metric space, Control Cybern. 36 (2007), 571-582. (2007) MR2376040
  7. Debreu, G., Integration of correspondences, Proc. 5th Berkeley Symp. Math. Stat. Probab. (Univ. Calif. 1965/66). Vol. 2: Contributions to Probability Theory, Part 1 Univ. California Press, Berkeley, Calif. (1967), 351-372. (1967) Zbl0211.52803MR0228252
  8. Hale, J. K., Lunel, S. M. Verduyn, 10.1007/978-1-4612-4342-7_3, Applied Mathematical Sciences 99 Springer, New York (1993). (1993) MR1243878DOI10.1007/978-1-4612-4342-7_3
  9. Himmelberg, C. J., Precompact contraction of metric uniformities, and the continuity of F ( t , x ) , Rend. Semin. Mat. Univ. Padova 50 (1973), 185-188. (1973) MR0355958
  10. Hu, S., Papageorgiou, N. S., Handbook of Multivalued Analysis. Vol. I: Theory, Mathematics and Its Applications 419 Kluwer Academic Publishers, Dordrecht (1997). (1997) MR1485775
  11. Kisielewicz, M., 10.1016/0022-247X(83)90248-2, J. Math. Anal. Appl. 97 (1983), 229-244. (1983) Zbl0524.34068MR0721240DOI10.1016/0022-247X(83)90248-2
  12. Kisielewicz, M., 10.1016/0022-247X(80)90220-6, J. Math. Anal. Appl. 78 (1980), 173-182. (1980) Zbl0461.34009MR0595774DOI10.1016/0022-247X(80)90220-6
  13. Lakshmikantham, V., Bhaskar, T. Gnana, Devi, J. Vasundhara, Theory of Set Differential Equations in Metric Spaces, Cambridge Scientific Publishers, Cambridge (2006). (2006) MR2438229
  14. Lakshmikantham, V., Tolstonogov, A. A., 10.1016/S0362-546X(03)00228-1, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 55 (2003), 255-268. (2003) Zbl1035.34064MR2007473DOI10.1016/S0362-546X(03)00228-1
  15. Li, S., Ogura, Y., Kreinovich, V., Limit Theorems and Applications of Set-valued and Fuzzy Set-valued Random Variables, Theory and Decision Library. Series B: Mathematical and Statistical Methods 43 Kluwer Academic Publishers Group, Dordrecht (2002). (2002) MR2039695
  16. Pinto, A. J. B. Lopes, Blasi, F. S. De, Iervolino, F., Uniqueness and existence theorems for differential equations with compact convex valued solutions, Boll. Unione Mat. Ital., IV. Ser. 3 (1970), 47-54. (1970) MR0259306
  17. Lupulescu, V., Successive approximations to solutions of set differential equations in Banach spaces, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 15 (2008), 391-401. (2008) Zbl1153.34037MR2406754
  18. Malinowski, M. T., 10.1016/j.amc.2012.06.019, Appl. Math. Comput. 219 (2012), 289-305. (2012) Zbl1297.34073MR2949593DOI10.1016/j.amc.2012.06.019
  19. Malinowski, M. T., 10.1016/j.amc.2012.03.027, Appl. Math. Comput. 218 (2012), 9427-9437. (2012) Zbl1252.34071MR2923039DOI10.1016/j.amc.2012.03.027
  20. Malinowski, M. T., Michta, M., 10.1016/j.na.2009.08.015, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 1247-1256. (2010) Zbl1184.60018MR2577525DOI10.1016/j.na.2009.08.015
  21. Markov, S. M., Existence and uniqueness of solutions of the interval differential equation X ' = F ( t , X ) , C. R. Acad. Bulg. Sci. 31 (1978), 1519-1522. (1978) MR0548735
  22. Plotnikov, V. A., Rashkov, P. I., Averaging in differential equations with Hukuhara derivative and delay, Funct. Differ. Equ. 8 (2001), 371-381. (2001) Zbl1046.34089MR1950981
  23. Tolstonogov, A., Differential Inclusions in a Banach Space, Mathematics and Its Applications 524 Kluwer Academic Publishers, Dordrecht 2000. Translated from Russian. Zbl1021.34002MR1888331
  24. Devi, J. Vasundhara, Vatsala, A. S., A study of set differential equations with delay, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 11 (2004), 287-300. (2004) MR2035268

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.