Product spaces generated by bilinear maps and duality
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 3, page 801-817
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSánchez Pérez, Enrique A.. "Product spaces generated by bilinear maps and duality." Czechoslovak Mathematical Journal 65.3 (2015): 801-817. <http://eudml.org/doc/271808>.
@article{SánchezPérez2015,
abstract = {In this paper we analyse a definition of a product of Banach spaces that is naturally associated by duality with a space of operators that can be considered as a generalization of the notion of space of multiplication operators. This dual relation allows to understand several constructions coming from different fields of functional analysis that can be seen as instances of the abstract one when a particular product is considered. Some relevant examples and applications are shown, regarding pointwise products of Banach function spaces, spaces of integrable functions with respect to vector measures, spaces of operators, multipliers on Banach spaces of analytic functions and spaces of Lipschitz functions.},
author = {Sánchez Pérez, Enrique A.},
journal = {Czechoslovak Mathematical Journal},
keywords = {Banach space; product; multiplication operator; duality; Banach function space; Hadamard product; Lipschitz map; integration; vector measure},
language = {eng},
number = {3},
pages = {801-817},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Product spaces generated by bilinear maps and duality},
url = {http://eudml.org/doc/271808},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Sánchez Pérez, Enrique A.
TI - Product spaces generated by bilinear maps and duality
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 3
SP - 801
EP - 817
AB - In this paper we analyse a definition of a product of Banach spaces that is naturally associated by duality with a space of operators that can be considered as a generalization of the notion of space of multiplication operators. This dual relation allows to understand several constructions coming from different fields of functional analysis that can be seen as instances of the abstract one when a particular product is considered. Some relevant examples and applications are shown, regarding pointwise products of Banach function spaces, spaces of integrable functions with respect to vector measures, spaces of operators, multipliers on Banach spaces of analytic functions and spaces of Lipschitz functions.
LA - eng
KW - Banach space; product; multiplication operator; duality; Banach function space; Hadamard product; Lipschitz map; integration; vector measure
UR - http://eudml.org/doc/271808
ER -
References
top- Blasco, Ó., Pavlović, M., 10.4171/RMI/642, Rev. Mat. Iberoam. 27 (2011), 415-447. (2011) Zbl1235.42004MR2848526DOI10.4171/RMI/642
- Calabuig, J. M., Delgado, O., Pérez, E. A. Sánchez, 10.1016/S0019-3577(09)00008-1, Indag. Math., New Ser. 19 (2008), 359-378. (2008) MR2513056DOI10.1016/S0019-3577(09)00008-1
- Defant, A., Floret, K., Tensor Norms and Operator Ideals, North-Holland Mathematics Studies 176 North-Holland, Amsterdam (1993). (1993) Zbl0774.46018MR1209438
- Delgado, O., Pérez, E. A. Sánchez, 10.1007/s00020-010-1741-7, Integral Equations Oper. Theory 66 (2010), 197-214. (2010) MR2595653DOI10.1007/s00020-010-1741-7
- Diestel, J., Uhl, J. J., Jr.,, Vector Measures, Mathematical Surveys 15 American Mathematical Society, Providence (1977). (1977) MR0453964
- Fernández, A., Mayoral, F., Naranjo, F., Sáez, C., Sánchez-Pérez, E. A., 10.1007/s11117-005-0016-z, Positivity 10 (2006), 1-16. (2006) Zbl1111.46018MR2223581DOI10.1007/s11117-005-0016-z
- Ferrando, I., Pérez, E. A. Sánchez, 10.1017/S1446788709000196, J. Aust. Math. Soc. 87 (2009), 211-225. (2009) MR2551119DOI10.1017/S1446788709000196
- Ferrando, I., Rodríguez, J., 10.1016/j.topol.2007.12.014, Topology Appl. 155 (2008), 1439-1444. (2008) Zbl1151.28014MR2427417DOI10.1016/j.topol.2007.12.014
- Kolwicz, P., Leśnik, K., Maligranda, L., 10.1016/j.jfa.2013.10.028, J. Funct. Anal. 266 (2014), 616-659. (2014) Zbl1308.46039MR3132723DOI10.1016/j.jfa.2013.10.028
- Lindenstrauss, J., Tzafriri, L., Classical Banach Spaces. II: Function Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete 97 Springer, Berlin (1979). (1979) Zbl0403.46022MR0540367
- Mastyło, M., Sánchez-Pérez, E. A., 10.1007/s00605-013-0560-8, Monatsh. Math. 173 (2014), 541-557. (2014) Zbl1305.46021MR3177946DOI10.1007/s00605-013-0560-8
- Okada, S., Ricker, W. J., Pérez, E. A. Sánchez, Optimal Domain and Integral Extension of Operators: Acting in Function Spaces, Operator Theory: Advances and Applications 180 Birkhäuser, Basel (2008). (2008) MR2418751
- Pérez, E. A. Sánchez, 10.1007/s00020-014-2169-2, Integral Equations Oper. Theory 80 (2014), 117-135. (2014) MR3248477DOI10.1007/s00020-014-2169-2
- Pérez, E. A. Sánchez, 10.1090/S0002-9939-04-07521-5, Proc. Am. Math. Soc. 132 (2004), 3319-3326. (2004) MR2073308DOI10.1090/S0002-9939-04-07521-5
- Pérez, E. A. Sánchez, 10.1215/ijm/1258138159, Ill. J. Math. 45 (2001), 907-923. (2001) MR1879243DOI10.1215/ijm/1258138159
- Rueda, P., Pérez, E. A. Sánchez, 10.12775/TMNA.2015.030, Topol. Methods Nonlinear Anal. 45 (2015), 641-654. (2015) MR3408839DOI10.12775/TMNA.2015.030
- Schep, A. R., 10.1007/s11117-009-0019-2, Positivity 14 (2010), 301-319. (2010) Zbl1216.46028MR2657636DOI10.1007/s11117-009-0019-2
- Sukochev, F., Tomskova, A., 10.4064/sm216-2-2, Stud. Math. 216 (2013), 111-129. (2013) Zbl1281.47023MR3085499DOI10.4064/sm216-2-2
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.