Transformations to symmetry based on the probability weighted characteristic function
Simos G. Meintanis; Gilles Stupfler
Kybernetika (2015)
- Volume: 51, Issue: 4, page 571-587
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topMeintanis, Simos G., and Stupfler, Gilles. "Transformations to symmetry based on the probability weighted characteristic function." Kybernetika 51.4 (2015): 571-587. <http://eudml.org/doc/271816>.
@article{Meintanis2015,
abstract = {We suggest a nonparametric version of the probability weighted empirical characteristic function (PWECF) introduced by Meintanis et al. [10] and use this PWECF in order to estimate the parameters of arbitrary transformations to symmetry. The almost sure consistency of the resulting estimators is shown. Finite-sample results for i.i.d. data are presented and are subsequently extended to the regression setting. A real data illustration is also included.},
author = {Meintanis, Simos G., Stupfler, Gilles},
journal = {Kybernetika},
keywords = {characteristic function; empirical characteristic function; probability weighted moments; symmetry transformation; characteristic function; empirical characteristic function; probability weighted moments; symmetry transformation},
language = {eng},
number = {4},
pages = {571-587},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Transformations to symmetry based on the probability weighted characteristic function},
url = {http://eudml.org/doc/271816},
volume = {51},
year = {2015},
}
TY - JOUR
AU - Meintanis, Simos G.
AU - Stupfler, Gilles
TI - Transformations to symmetry based on the probability weighted characteristic function
JO - Kybernetika
PY - 2015
PB - Institute of Information Theory and Automation AS CR
VL - 51
IS - 4
SP - 571
EP - 587
AB - We suggest a nonparametric version of the probability weighted empirical characteristic function (PWECF) introduced by Meintanis et al. [10] and use this PWECF in order to estimate the parameters of arbitrary transformations to symmetry. The almost sure consistency of the resulting estimators is shown. Finite-sample results for i.i.d. data are presented and are subsequently extended to the regression setting. A real data illustration is also included.
LA - eng
KW - characteristic function; empirical characteristic function; probability weighted moments; symmetry transformation; characteristic function; empirical characteristic function; probability weighted moments; symmetry transformation
UR - http://eudml.org/doc/271816
ER -
References
top- Bickel, P. J., 10.1214/aos/1176345863, Ann. Statist. 10 (1982), 647-671. Zbl0489.62033MR0663424DOI10.1214/aos/1176345863
- Bickel, P. J., Doksum, K. A., 10.1080/01621459.1981.10477649, J. Amer. Statist. Assoc. 76 (1981), 296-311. Zbl0464.62058MR0624332DOI10.1080/01621459.1981.10477649
- Box, G. E. P., Cox, D. R., An analysis of transformations., J. Roy. Statist. Soc. B 26 (1964), 211-243. Zbl0504.62058MR0192611
- Burbidge, J. B., Magee, L., Robb, A. L., 10.1080/01621459.1988.10478575, J. Amer. Statist. Assoc. 83 (1988), 123-127. MR0941005DOI10.1080/01621459.1988.10478575
- Chen, G., Lockhart, R., Stephens, M. A., 10.2307/3315946, Canad. J. Statist. 30 (2002), 1-59. MR1926062DOI10.2307/3315946
- González-Rivera, G., Drost, F. C., 10.1016/s0304-4076(99)00005-6, J. Econometr. 93 (1999), 93-111. Zbl0941.62101MR1720166DOI10.1016/s0304-4076(99)00005-6
- Horowitz, J. L., 10.1007/978-0-387-92870-8, Springer-Verlag, New York 2009. Zbl1278.62005MR2535631DOI10.1007/978-0-387-92870-8
- John, J. A., Draper, N. R., 10.2307/2986305, J. Roy. Statist. Soc. C 29 (1980), 190-197. Zbl0443.62062DOI10.2307/2986305
- Manly, B. F. J., Exponential data transformations., J. Roy. Statist. Soc. D 25 (1976), 37-42.
- Meintanis, S. G., Swanepoel, J., Allison, J., 10.1016/j.jspi.2013.09.011, J. Statist. Plann. Infer. 146 (2014), 122-132. Zbl1279.62107MR3132485DOI10.1016/j.jspi.2013.09.011
- Newey, W. K., 10.1016/0304-4076(88)90048-6, J. Econometr. 38 (1988), 301-339. Zbl0686.62045MR0964634DOI10.1016/0304-4076(88)90048-6
- Newey, W. K., Steigerwald, D. G., 10.2307/2171754, Econometrica 65 (1997), 587-599. Zbl0870.62091MR1445623DOI10.2307/2171754
- Parzen, E., 10.1214/aoms/1177704472, Ann. Math. Statist. 33 (1962), 1065-1076. Zbl0116.11302MR0143282DOI10.1214/aoms/1177704472
- Pólya, G., Szegő, G., Problems and Theorems in Analysis, Volume I., Springer-Verlag, Berlin 1998.
- Rosenblatt, M., 10.1214/aoms/1177728190, Ann. Math. Statist. 27 (1956), 832-837. Zbl0073.14602MR0079873DOI10.1214/aoms/1177728190
- Savchuk, O. Y., Schick, A., 10.1080/10485252.2013.811788, J. Nonparametr. Statist. 25 (2013), 545-559. MR3174283DOI10.1080/10485252.2013.811788
- Sen, P. K., 10.1080/01621459.1968.10480934, J. Amer. Statist. Assoc. 63 (1968), 1379-1389. Zbl0167.47202MR0258201DOI10.1080/01621459.1968.10480934
- Theil, H., A rank-invariant method of linear and polynomial regression analysis. I, II, III., Nederl. Akad. Wetensch. Proc. 53 (1950), 386-392, 521-525, 1397-1412. MR0036490
- Yeo, I.-K., Johnson, R. A., 10.1093/biomet/87.4.954, Biometrika 87 (2000), 954-959. Zbl1028.62010MR1813988DOI10.1093/biomet/87.4.954
- Yeo, I.-K., Johnson, R. A., 10.1016/S0167-7152(00)00143-7, Statist. Probab. Lett. 51 (2001), 63-69. MR1820146DOI10.1016/S0167-7152(00)00143-7
- Yeo, I.-K., Johnson, R. A., 10.1007/978-3-319-02651-0_11, In: Contemporary Developments in Statistical Theory (S. Lahiri, A. Schick, A. SenGupta and T. Sriram, eds.), Springer International Publishing 2014, pp. 191-202. MR3149922DOI10.1007/978-3-319-02651-0_11
- Yeo, I.-K., Johnson, R. A., Deng, X. W., 10.5351/csam.2014.21.3.213, Commun. Stat. Appl. Methods 21 (2014), 213-224. Zbl1305.62073DOI10.5351/csam.2014.21.3.213
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.