Infinitely many solutions for boundary value problems arising from the fractional advection dispersion equation

Jing Chen; Xian Hua Tang

Applications of Mathematics (2015)

  • Volume: 60, Issue: 6, page 703-724
  • ISSN: 0862-7940

Abstract

top
We consider the existence of infinitely many solutions to the boundary value problem d d t 1 2 0 D t - β ( u ' ( t ) ) + 1 2 t D T - β ( u ' ( t ) ) + F ( t , u ( t ) ) = 0 a.e. t [ 0 , T ] , u ( 0 ) = u ( T ) = 0 . Under more general assumptions on the nonlinearity, we obtain new criteria to guarantee that this boundary value problem has infinitely many solutions in the superquadratic, subquadratic and asymptotically quadratic cases by using the critical point theory.

How to cite

top

Chen, Jing, and Tang, Xian Hua. "Infinitely many solutions for boundary value problems arising from the fractional advection dispersion equation." Applications of Mathematics 60.6 (2015): 703-724. <http://eudml.org/doc/271820>.

@article{Chen2015,
abstract = {We consider the existence of infinitely many solutions to the boundary value problem \begin\{gather\} \frac\{\{\rm d\}\}\{\{\rm d\} t\}\Big (\frac\{1\}\{2\} \_\{0\}D\_\{t\}^\{-\beta \}(u^\{\prime \}(t)) +\frac\{1\}\{2\} \_\{t\}D\_\{T\}^\{-\beta \}(u^\{\prime \}(t))\Big )+\nabla F(t,u(t))=0 \quad \text\{\rm a.e.\}\ t\in [0,T],\nonumber \\ u(0)=u(T)=0.\nonumber \end\{gather\} Under more general assumptions on the nonlinearity, we obtain new criteria to guarantee that this boundary value problem has infinitely many solutions in the superquadratic, subquadratic and asymptotically quadratic cases by using the critical point theory.},
author = {Chen, Jing, Tang, Xian Hua},
journal = {Applications of Mathematics},
keywords = {fractional boundary value problem; critical point theory; variational methods; fractional boundary value problem; critical point theory; variational methods},
language = {eng},
number = {6},
pages = {703-724},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Infinitely many solutions for boundary value problems arising from the fractional advection dispersion equation},
url = {http://eudml.org/doc/271820},
volume = {60},
year = {2015},
}

TY - JOUR
AU - Chen, Jing
AU - Tang, Xian Hua
TI - Infinitely many solutions for boundary value problems arising from the fractional advection dispersion equation
JO - Applications of Mathematics
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 6
SP - 703
EP - 724
AB - We consider the existence of infinitely many solutions to the boundary value problem \begin{gather} \frac{{\rm d}}{{\rm d} t}\Big (\frac{1}{2} _{0}D_{t}^{-\beta }(u^{\prime }(t)) +\frac{1}{2} _{t}D_{T}^{-\beta }(u^{\prime }(t))\Big )+\nabla F(t,u(t))=0 \quad \text{\rm a.e.}\ t\in [0,T],\nonumber \\ u(0)=u(T)=0.\nonumber \end{gather} Under more general assumptions on the nonlinearity, we obtain new criteria to guarantee that this boundary value problem has infinitely many solutions in the superquadratic, subquadratic and asymptotically quadratic cases by using the critical point theory.
LA - eng
KW - fractional boundary value problem; critical point theory; variational methods; fractional boundary value problem; critical point theory; variational methods
UR - http://eudml.org/doc/271820
ER -

References

top
  1. Ambrosetti, A., Rabinowitz, P. H., 10.1016/0022-1236(73)90051-7, J. Funct. Anal. 14 (1973), 349-381. (1973) Zbl0273.49063MR0370183DOI10.1016/0022-1236(73)90051-7
  2. Bai, C., Existence of solutions for a nonlinear fractional boundary value problem via a local minimum theorem, Electron. J. Differ. Equ. (electronic only) 2012 (2012), Article No. 176, 9 pages. (2012) Zbl1254.34009MR2991410
  3. Bai, C., Existence of three solutions for a nonlinear fractional boundary value problem via a critical points theorem, Abstr. Appl. Anal. 2012 (2012), Article ID 963105, 13 pages. (2012) Zbl1253.34008MR2969986
  4. Bartolo, P., Benci, V., Fortunato, D., Abstract critical point theorems and applications to some nonlinear problems with ``strong'' resonance at infinity, Nonlinear Anal., Theory Methods Appl. 7 (1983), 981-1012. (1983) Zbl0522.58012MR0713209
  5. Benson, D. A., Wheatcraft, S. W., Meerschaert, M. M., 10.1029/2000WR900031, Water Resour. Res. 36 (2000), 1403-1412, DOI:10.1029/2000WR900031. (2000) DOI10.1029/2000WR900031
  6. Bin, G., Multiple solutions for a class of fractional boundary value problems, Abstr. Appl. Anal. 2012 (2012), Article ID 468980, 16 pages. (2012) Zbl1253.34009MR2991017
  7. Chen, J., Tang, X. H., Existence and multiplicity of solutions for some fractional boundary value problem via critical point theory, Abstr. Appl. Anal. 2012 (2012), Article No. 648635, 21 pages. (2012) Zbl1235.34011MR2872321
  8. Chen, J., Tang, X. H., Infinitely many solutions for a class of fractional boundary value problem, Bull. Malays. Math. Sci. Soc. (2) 36 (2013), 1083-1097. (2013) Zbl1280.26011MR3108797
  9. Clark, D. C., 10.1512/iumj.1973.22.22008, Indiana Univ. Math. J. 22 (1972), 65-74. (1972) Zbl0228.58006MR0296777DOI10.1512/iumj.1973.22.22008
  10. Ervin, V. J., Roop, J. P., 10.1002/num.20112, Numer. Methods Partial Differ. Equations 22 (2006), 558-576. (2006) Zbl1095.65118MR2212226DOI10.1002/num.20112
  11. Fix, G. J., Roop, J. P., 10.1016/j.camwa.2004.10.003, Comput. Math. Appl. 48 (2004), 1017-1033. (2004) MR2107380DOI10.1016/j.camwa.2004.10.003
  12. Graef, J. R., Kong, L., Kong, Q., 10.1080/00036811.2014.930822, Appl. Anal. 94 (2015), 1288-1304. (2015) Zbl1323.34007MR3325346DOI10.1080/00036811.2014.930822
  13. Heidarkhani, S., Infinitely many solutions for nonlinear perturbed fractional boundary value problems, An. Univ. Craiova, Ser. Mat. Inf. 41 (2014), 88-103. (2014) Zbl1324.58005MR3234477
  14. Izydorek, M., Janczewska, J., 10.1016/j.jde.2005.06.029, J. Differ. Equations 219 (2005), 375-389. (2005) Zbl1080.37067MR2183265DOI10.1016/j.jde.2005.06.029
  15. Jiao, F., Zhou, Y., 10.1016/j.camwa.2011.03.086, Comput. Math. Appl. 62 (2011), 1181-1199. (2011) Zbl1235.34017MR2824707DOI10.1016/j.camwa.2011.03.086
  16. Jiao, F., Zhou, Y., 10.1142/S0218127412500861, Int. J. Bifurcation Chaos Appl. Sci. Eng. 22 (2012), Article ID 1250086, 17 pages. (2012) Zbl1258.34015MR2926062DOI10.1142/S0218127412500861
  17. Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies 204 Elsevier, Amsterdam (2006). (2006) Zbl1092.45003MR2218073
  18. Kong, L., Existence of solutions to boundary value problems arising from the fractional advection dispersion equation, Electron. J. Differ. Equ. (electronic only) 2013 (2013), Article No. 106, 15 pages. (2013) Zbl1291.34016MR3065059
  19. Li, F., Liang, Z., Zhang, Q., 10.1016/j.jmaa.2005.03.043, J. Math. Anal. Appl. 312 (2005), 357-373. (2005) Zbl1088.34012MR2175224DOI10.1016/j.jmaa.2005.03.043
  20. Li, Y.-N., Sun, H.-R., Zhang, Q.-G., Existence of solutions to fractional boundary-value problems with a parameter, Electron. J. Differ. Equ. (electronic only) 2013 (2013), Article No. 141, 12 pages. (2013) Zbl1294.34006MR3084621
  21. Mawhin, J., Willem, M., 10.1007/978-1-4757-2061-7, Applied Mathematical Sciences 74 Springer, New York (1989). (1989) Zbl0676.58017MR0982267DOI10.1007/978-1-4757-2061-7
  22. Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication John Wiley & Sons, New York (1993). (1993) Zbl0789.26002MR1219954
  23. Nyamoradi, N., 10.1007/s00009-013-0307-8, Mediterr. J. Math. 11 (2014), 75-87. (2014) MR3160613DOI10.1007/s00009-013-0307-8
  24. Podlubny, I., Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering 198 Academic Press, San Diego (1999). (1999) Zbl0924.34008MR1658022
  25. Rabinowitz, P. H., 10.1090/cbms/065, Reg. Conf. Ser. Math. 65. American Mathematical Society Providence (1986). (1986) Zbl0609.58002MR0845785DOI10.1090/cbms/065
  26. Samko, S. G., Kilbas, A. A., Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York (1993). (1993) Zbl0818.26003MR1347689
  27. Sun, H.-R., Zhang, Q.-G., 10.1016/j.camwa.2012.02.023, Comput. Math. Appl. 64 (2012), 3436-3443. (2012) Zbl1268.34027MR2989371DOI10.1016/j.camwa.2012.02.023
  28. Tang, X. H., 10.1016/j.jmaa.2012.12.035, J. Math. Anal. Appl. 401 (2013), 407-415. (2013) MR3011282DOI10.1016/j.jmaa.2012.12.035
  29. Willem, M., Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications 24 Birkhäuser, Boston (1996). (1996) Zbl0856.49001MR1400007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.