Contracting endomorphisms and dualizing complexes
Saeed Nasseh; Sean Sather-Wagstaff
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 3, page 837-865
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topNasseh, Saeed, and Sather-Wagstaff, Sean. "Contracting endomorphisms and dualizing complexes." Czechoslovak Mathematical Journal 65.3 (2015): 837-865. <http://eudml.org/doc/271823>.
@article{Nasseh2015,
abstract = {We investigate how one can detect the dualizing property for a chain complex over a commutative local Noetherian ring $R$. Our focus is on homological properties of contracting endomorphisms of $R$, e.g., the Frobenius endomorphism when $R$ contains a field of positive characteristic. For instance, in this case, when $R$ is $F$-finite and $C$ is a semidualizing $R$-complex, we prove that the following conditions are equivalent: (i) $C$ is a dualizing $R$-complex; (ii) $C\sim \{\mathbf \{R\}\}\{\rm Hom\}_R(^nR,C)$ for some $n>0$; (iii) $\{\rm G\}_C\text\{\rm -dim\} ^nR <\infty $ and $C$ is derived $\{\mathbf \{R\}\}\{\rm Hom\}_R(^nR,C)$-reflexive for some $n>0$; and (iv) $\{\rm G\}_C\text\{\rm -dim\} ^nR <\infty $ for infinitely many $n>0$.},
author = {Nasseh, Saeed, Sather-Wagstaff, Sean},
journal = {Czechoslovak Mathematical Journal},
keywords = {Bass classes; contracting endomorphisms; dualizing complex; Frobenius endomorphisms; $\{\rm G\}_\{C\}$-dimension; semidualizing complex},
language = {eng},
number = {3},
pages = {837-865},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Contracting endomorphisms and dualizing complexes},
url = {http://eudml.org/doc/271823},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Nasseh, Saeed
AU - Sather-Wagstaff, Sean
TI - Contracting endomorphisms and dualizing complexes
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 3
SP - 837
EP - 865
AB - We investigate how one can detect the dualizing property for a chain complex over a commutative local Noetherian ring $R$. Our focus is on homological properties of contracting endomorphisms of $R$, e.g., the Frobenius endomorphism when $R$ contains a field of positive characteristic. For instance, in this case, when $R$ is $F$-finite and $C$ is a semidualizing $R$-complex, we prove that the following conditions are equivalent: (i) $C$ is a dualizing $R$-complex; (ii) $C\sim {\mathbf {R}}{\rm Hom}_R(^nR,C)$ for some $n>0$; (iii) ${\rm G}_C\text{\rm -dim} ^nR <\infty $ and $C$ is derived ${\mathbf {R}}{\rm Hom}_R(^nR,C)$-reflexive for some $n>0$; and (iv) ${\rm G}_C\text{\rm -dim} ^nR <\infty $ for infinitely many $n>0$.
LA - eng
KW - Bass classes; contracting endomorphisms; dualizing complex; Frobenius endomorphisms; ${\rm G}_{C}$-dimension; semidualizing complex
UR - http://eudml.org/doc/271823
ER -
References
top- André, M., Homologie des algèbres commutatives, Die Grundlehren der mathematischen Wissenschaften 206 Springer, Berlin French (1974). (1974) Zbl0284.18009MR0352220
- Auslander, M., Bridger, M., Stable Module Theory, Memoirs of the American Mathematical Society 94 American Mathematical Society, Providence (1969). (1969) Zbl0204.36402MR0269685
- Auslander, M., Buchsbaum, D. A., 10.1090/S0002-9947-1957-0086822-7, Trans. Am. Math. Soc. 85 (1957), 390-405. (1957) Zbl0078.02802MR0086822DOI10.1090/S0002-9947-1957-0086822-7
- Avramov, L. L., Foxby, H.-B., 10.1112/S0024611597000348, Proc. Lond. Math. Soc. (3) 75 (1997), 241-270. (1997) Zbl0901.13011MR1455856DOI10.1112/S0024611597000348
- Avramov, L. L., Foxby, H.-B., 10.2307/2374888, Am. J. Math. 114 (1992), 1007-1047. (1992) Zbl0769.13007MR1183530DOI10.2307/2374888
- Avramov, L. L., Foxby, H.-B., 10.1016/0022-4049(91)90144-Q, J. Pure Appl. Algebra 71 (1991), 129-155. (1991) Zbl0737.16002MR1117631DOI10.1016/0022-4049(91)90144-Q
- Avramov, L. L., Foxby, H.-B., Herzog, B., 10.1006/jabr.1994.1057, J. Algebra 164 (1994), 124-145. (1994) Zbl0798.13002MR1268330DOI10.1006/jabr.1994.1057
- Avramov, L. L., Hochster, M., Iyengar, S. B., Yao, Y., 10.1007/s00208-011-0682-z, Math. Ann. 353 (2012), 275-291. (2012) Zbl1241.13013MR2915536DOI10.1007/s00208-011-0682-z
- Avramov, L. L., Iyengar, S. B., Lipman, J., 10.2140/ant.2010.4.47, Algebra Number Theory 4 (2010), 47-86. (2010) Zbl1194.13017MR2592013DOI10.2140/ant.2010.4.47
- Avramov, L. L., Iyengar, S., Miller, C., 10.1353/ajm.2006.0001, Am. J. Math. 128 (2006), 23-90. (2006) Zbl1102.13011MR2197067DOI10.1353/ajm.2006.0001
- Christensen, L. W., Semi-dualizing complexes and their Auslander categories, Appendix: Chain defects Trans. Am. Math. Soc. 353 (2001), 1839-1883. (2001) Zbl0969.13006MR1813596
- Christensen, L. W., Frankild, A., Holm, H., 10.1016/j.jalgebra.2005.12.007, J. Algebra 302 (2006), 231-279. (2006) Zbl1104.13008MR2236602DOI10.1016/j.jalgebra.2005.12.007
- Christensen, L. W., Holm, H., 10.4153/CJM-2009-004-x, Can. J. Math. 61 (2009), 76-108. (2009) Zbl1173.13016MR2488450DOI10.4153/CJM-2009-004-x
- Foxby, H.-B., 10.7146/math.scand.a-11671, Math. Scand. 40 (1977), 5-19. (1977) Zbl0356.13004MR0447269DOI10.7146/math.scand.a-11671
- Foxby, H.-B., Frankild, A. J., 10.1215/ijm/1258735325, Ill. J. Math. 51 (2007), 67-82. (2007) Zbl1121.13015MR2346187DOI10.1215/ijm/1258735325
- Foxby, H.-B., Thorup, A., 10.1090/S0002-9939-1977-0453724-1, Proc. Am. Math. Soc. 67 (1977), 27-31. (1977) Zbl0381.13006MR0453724DOI10.1090/S0002-9939-1977-0453724-1
- Frankild, A., Sather-Wagstaff, S., 10.1080/00927870601052489, Commun. Algebra 35 (2007), 461-500. (2007) Zbl1118.13015MR2294611DOI10.1080/00927870601052489
- Gelfand, S. I., Manin, Y. I., Methods of Homological Algebra, Springer Monographs in Mathematics Springer, Berlin (1996), translated from the Russian Nauka Moskva (1988). (1988) Zbl0668.18001
- Goto, S., A problem on Noetherian local rings of characteristic , Proc. Am. Math. Soc. 64 (1977), 199-205. (1977) Zbl0408.13008MR0447212
- Grothendieck, A., Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents, Première partie (I), Publ. Math., Inst. Hautes Étud. Sci. 11 French (1961), 349-511. (1961)
- Hartshorne, R., 10.1007/BFb0080482, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/1964 Lecture Notes in Mathematics 20 Springer, Berlin (1966). (1966) Zbl0212.26101MR0222093DOI10.1007/BFb0080482
- Hungerford, T. W., Algebra, Graduate Texts in Mathematics 73 Springer, New York (1980). (1980) Zbl0442.00002MR0600654
- Iyengar, S., Sather-Wagstaff, S., 10.1215/ijm/1258136183, Ill. J. Math. 48 (2004), 241-272. (2004) Zbl1103.13009MR2048224DOI10.1215/ijm/1258136183
- Kunz, E., 10.2307/2374038, Am. J. Math. 98 (1976), 999-1013. (1976) Zbl0341.13009MR0432625DOI10.2307/2374038
- Kunz, E., 10.2307/2373351, Am. J. Math. 91 (1969), 772-784. (1969) MR0252389DOI10.2307/2373351
- Matsumura, H., Commutative Ring Theory, Cambridge Studies in Advanced Mathematics 8 Cambridge University Press, Cambridge (1989). (1989) Zbl0666.13002MR1011461
- Nasseh, S., Sather-Wagstaff, S., 10.1016/j.jpaa.2014.05.017, J. Pure Appl. Algebra 219 (2015), 622-645. (2015) Zbl1304.13014MR3279378DOI10.1016/j.jpaa.2014.05.017
- Nasseh, S., Tousi, M., Yassemi, S., 10.1007/s00229-009-0296-x, Manuscr. Math. 130 (2009), 425-431. (2009) Zbl1222.13013MR2563144DOI10.1007/s00229-009-0296-x
- Rodicio, A. G., 10.1007/BF01278977, Manuscr. Math. 62 (1988), 181-185. (1988) Zbl0657.13012MR0963004DOI10.1007/BF01278977
- Sather-Wagstaff, S., Bass numbers and semidualizing complexes, Commutative Algebra and Its Applications M. Fontana et al. Conf. Proc. Fez, Morocco, 2009. Walter de Gruyter Berlin (2009), 349-381. (2009) Zbl1184.13045MR2640315
- Sather-Wagstaff, S., 10.1016/j.jpaa.2008.04.005, J. Pure Appl. Algebra 212 (2008), 2594-2611. (2008) Zbl1156.13003MR2452313DOI10.1016/j.jpaa.2008.04.005
- Serre, J.-P., Sur la dimension homologique des anneaux et des modules noethériens, Proc. of the International Symposium on Algebraic Number Theory, Tokyo & Nikko, 1955 Science Council of Japan Tokyo French (1956), 175-189. (1956) Zbl0073.26004MR0086071
- Takahashi, R., Yoshino, Y., 10.1090/S0002-9939-04-07525-2, Proc. Am. Math. Soc. 132 (2004), 3177-3187. (2004) Zbl1094.13007MR2073291DOI10.1090/S0002-9939-04-07525-2
- Verdier, J.-L., On derived categories of abelian categories, G. Maltsiniotis Astérisque 239 Société Mathématique de France, Paris French (1996). (1996) MR1453167
- Verdier, J.-L., Catégories dérivées. Quelques résultats (Etat O), Cohomologie étale. Séminaire de géométrie algébrique du Bois-Marie SGA 4 1/2; Lecture Notes in Mathematics 569 Springer, Berlin French 262-311 (1977). (1977) Zbl0407.18008MR0463174
- Yassemi, S., G-dimension, Math. Scand. 77 (1995), 161-174. (1995) Zbl0864.13010MR1379262
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.