Contracting endomorphisms and dualizing complexes

Saeed Nasseh; Sean Sather-Wagstaff

Czechoslovak Mathematical Journal (2015)

  • Volume: 65, Issue: 3, page 837-865
  • ISSN: 0011-4642

Abstract

top
We investigate how one can detect the dualizing property for a chain complex over a commutative local Noetherian ring R . Our focus is on homological properties of contracting endomorphisms of R , e.g., the Frobenius endomorphism when R contains a field of positive characteristic. For instance, in this case, when R is F -finite and C is a semidualizing R -complex, we prove that the following conditions are equivalent: (i) C is a dualizing R -complex; (ii) C 𝐑 Hom R ( n R , C ) for some n > 0 ; (iii) G C -dim n R < and C is derived 𝐑 Hom R ( n R , C ) -reflexive for some n > 0 ; and (iv) G C -dim n R < for infinitely many n > 0 .

How to cite

top

Nasseh, Saeed, and Sather-Wagstaff, Sean. "Contracting endomorphisms and dualizing complexes." Czechoslovak Mathematical Journal 65.3 (2015): 837-865. <http://eudml.org/doc/271823>.

@article{Nasseh2015,
abstract = {We investigate how one can detect the dualizing property for a chain complex over a commutative local Noetherian ring $R$. Our focus is on homological properties of contracting endomorphisms of $R$, e.g., the Frobenius endomorphism when $R$ contains a field of positive characteristic. For instance, in this case, when $R$ is $F$-finite and $C$ is a semidualizing $R$-complex, we prove that the following conditions are equivalent: (i) $C$ is a dualizing $R$-complex; (ii) $C\sim \{\mathbf \{R\}\}\{\rm Hom\}_R(^nR,C)$ for some $n>0$; (iii) $\{\rm G\}_C\text\{\rm -dim\} ^nR <\infty $ and $C$ is derived $\{\mathbf \{R\}\}\{\rm Hom\}_R(^nR,C)$-reflexive for some $n>0$; and (iv) $\{\rm G\}_C\text\{\rm -dim\} ^nR <\infty $ for infinitely many $n>0$.},
author = {Nasseh, Saeed, Sather-Wagstaff, Sean},
journal = {Czechoslovak Mathematical Journal},
keywords = {Bass classes; contracting endomorphisms; dualizing complex; Frobenius endomorphisms; $\{\rm G\}_\{C\}$-dimension; semidualizing complex},
language = {eng},
number = {3},
pages = {837-865},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Contracting endomorphisms and dualizing complexes},
url = {http://eudml.org/doc/271823},
volume = {65},
year = {2015},
}

TY - JOUR
AU - Nasseh, Saeed
AU - Sather-Wagstaff, Sean
TI - Contracting endomorphisms and dualizing complexes
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 3
SP - 837
EP - 865
AB - We investigate how one can detect the dualizing property for a chain complex over a commutative local Noetherian ring $R$. Our focus is on homological properties of contracting endomorphisms of $R$, e.g., the Frobenius endomorphism when $R$ contains a field of positive characteristic. For instance, in this case, when $R$ is $F$-finite and $C$ is a semidualizing $R$-complex, we prove that the following conditions are equivalent: (i) $C$ is a dualizing $R$-complex; (ii) $C\sim {\mathbf {R}}{\rm Hom}_R(^nR,C)$ for some $n>0$; (iii) ${\rm G}_C\text{\rm -dim} ^nR <\infty $ and $C$ is derived ${\mathbf {R}}{\rm Hom}_R(^nR,C)$-reflexive for some $n>0$; and (iv) ${\rm G}_C\text{\rm -dim} ^nR <\infty $ for infinitely many $n>0$.
LA - eng
KW - Bass classes; contracting endomorphisms; dualizing complex; Frobenius endomorphisms; ${\rm G}_{C}$-dimension; semidualizing complex
UR - http://eudml.org/doc/271823
ER -

References

top
  1. André, M., Homologie des algèbres commutatives, Die Grundlehren der mathematischen Wissenschaften 206 Springer, Berlin French (1974). (1974) Zbl0284.18009MR0352220
  2. Auslander, M., Bridger, M., Stable Module Theory, Memoirs of the American Mathematical Society 94 American Mathematical Society, Providence (1969). (1969) Zbl0204.36402MR0269685
  3. Auslander, M., Buchsbaum, D. A., 10.1090/S0002-9947-1957-0086822-7, Trans. Am. Math. Soc. 85 (1957), 390-405. (1957) Zbl0078.02802MR0086822DOI10.1090/S0002-9947-1957-0086822-7
  4. Avramov, L. L., Foxby, H.-B., 10.1112/S0024611597000348, Proc. Lond. Math. Soc. (3) 75 (1997), 241-270. (1997) Zbl0901.13011MR1455856DOI10.1112/S0024611597000348
  5. Avramov, L. L., Foxby, H.-B., 10.2307/2374888, Am. J. Math. 114 (1992), 1007-1047. (1992) Zbl0769.13007MR1183530DOI10.2307/2374888
  6. Avramov, L. L., Foxby, H.-B., 10.1016/0022-4049(91)90144-Q, J. Pure Appl. Algebra 71 (1991), 129-155. (1991) Zbl0737.16002MR1117631DOI10.1016/0022-4049(91)90144-Q
  7. Avramov, L. L., Foxby, H.-B., Herzog, B., 10.1006/jabr.1994.1057, J. Algebra 164 (1994), 124-145. (1994) Zbl0798.13002MR1268330DOI10.1006/jabr.1994.1057
  8. Avramov, L. L., Hochster, M., Iyengar, S. B., Yao, Y., 10.1007/s00208-011-0682-z, Math. Ann. 353 (2012), 275-291. (2012) Zbl1241.13013MR2915536DOI10.1007/s00208-011-0682-z
  9. Avramov, L. L., Iyengar, S. B., Lipman, J., 10.2140/ant.2010.4.47, Algebra Number Theory 4 (2010), 47-86. (2010) Zbl1194.13017MR2592013DOI10.2140/ant.2010.4.47
  10. Avramov, L. L., Iyengar, S., Miller, C., 10.1353/ajm.2006.0001, Am. J. Math. 128 (2006), 23-90. (2006) Zbl1102.13011MR2197067DOI10.1353/ajm.2006.0001
  11. Christensen, L. W., Semi-dualizing complexes and their Auslander categories, Appendix: Chain defects Trans. Am. Math. Soc. 353 (2001), 1839-1883. (2001) Zbl0969.13006MR1813596
  12. Christensen, L. W., Frankild, A., Holm, H., 10.1016/j.jalgebra.2005.12.007, J. Algebra 302 (2006), 231-279. (2006) Zbl1104.13008MR2236602DOI10.1016/j.jalgebra.2005.12.007
  13. Christensen, L. W., Holm, H., 10.4153/CJM-2009-004-x, Can. J. Math. 61 (2009), 76-108. (2009) Zbl1173.13016MR2488450DOI10.4153/CJM-2009-004-x
  14. Foxby, H.-B., 10.7146/math.scand.a-11671, Math. Scand. 40 (1977), 5-19. (1977) Zbl0356.13004MR0447269DOI10.7146/math.scand.a-11671
  15. Foxby, H.-B., Frankild, A. J., 10.1215/ijm/1258735325, Ill. J. Math. 51 (2007), 67-82. (2007) Zbl1121.13015MR2346187DOI10.1215/ijm/1258735325
  16. Foxby, H.-B., Thorup, A., 10.1090/S0002-9939-1977-0453724-1, Proc. Am. Math. Soc. 67 (1977), 27-31. (1977) Zbl0381.13006MR0453724DOI10.1090/S0002-9939-1977-0453724-1
  17. Frankild, A., Sather-Wagstaff, S., 10.1080/00927870601052489, Commun. Algebra 35 (2007), 461-500. (2007) Zbl1118.13015MR2294611DOI10.1080/00927870601052489
  18. Gelfand, S. I., Manin, Y. I., Methods of Homological Algebra, Springer Monographs in Mathematics Springer, Berlin (1996), translated from the Russian Nauka Moskva (1988). (1988) Zbl0668.18001
  19. Goto, S., A problem on Noetherian local rings of characteristic p , Proc. Am. Math. Soc. 64 (1977), 199-205. (1977) Zbl0408.13008MR0447212
  20. Grothendieck, A., Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents, Première partie (I), Publ. Math., Inst. Hautes Étud. Sci. 11 French (1961), 349-511. (1961) 
  21. Hartshorne, R., 10.1007/BFb0080482, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/1964 Lecture Notes in Mathematics 20 Springer, Berlin (1966). (1966) Zbl0212.26101MR0222093DOI10.1007/BFb0080482
  22. Hungerford, T. W., Algebra, Graduate Texts in Mathematics 73 Springer, New York (1980). (1980) Zbl0442.00002MR0600654
  23. Iyengar, S., Sather-Wagstaff, S., 10.1215/ijm/1258136183, Ill. J. Math. 48 (2004), 241-272. (2004) Zbl1103.13009MR2048224DOI10.1215/ijm/1258136183
  24. Kunz, E., 10.2307/2374038, Am. J. Math. 98 (1976), 999-1013. (1976) Zbl0341.13009MR0432625DOI10.2307/2374038
  25. Kunz, E., 10.2307/2373351, Am. J. Math. 91 (1969), 772-784. (1969) MR0252389DOI10.2307/2373351
  26. Matsumura, H., Commutative Ring Theory, Cambridge Studies in Advanced Mathematics 8 Cambridge University Press, Cambridge (1989). (1989) Zbl0666.13002MR1011461
  27. Nasseh, S., Sather-Wagstaff, S., 10.1016/j.jpaa.2014.05.017, J. Pure Appl. Algebra 219 (2015), 622-645. (2015) Zbl1304.13014MR3279378DOI10.1016/j.jpaa.2014.05.017
  28. Nasseh, S., Tousi, M., Yassemi, S., 10.1007/s00229-009-0296-x, Manuscr. Math. 130 (2009), 425-431. (2009) Zbl1222.13013MR2563144DOI10.1007/s00229-009-0296-x
  29. Rodicio, A. G., 10.1007/BF01278977, Manuscr. Math. 62 (1988), 181-185. (1988) Zbl0657.13012MR0963004DOI10.1007/BF01278977
  30. Sather-Wagstaff, S., Bass numbers and semidualizing complexes, Commutative Algebra and Its Applications M. Fontana et al. Conf. Proc. Fez, Morocco, 2009. Walter de Gruyter Berlin (2009), 349-381. (2009) Zbl1184.13045MR2640315
  31. Sather-Wagstaff, S., 10.1016/j.jpaa.2008.04.005, J. Pure Appl. Algebra 212 (2008), 2594-2611. (2008) Zbl1156.13003MR2452313DOI10.1016/j.jpaa.2008.04.005
  32. Serre, J.-P., Sur la dimension homologique des anneaux et des modules noethériens, Proc. of the International Symposium on Algebraic Number Theory, Tokyo & Nikko, 1955 Science Council of Japan Tokyo French (1956), 175-189. (1956) Zbl0073.26004MR0086071
  33. Takahashi, R., Yoshino, Y., 10.1090/S0002-9939-04-07525-2, Proc. Am. Math. Soc. 132 (2004), 3177-3187. (2004) Zbl1094.13007MR2073291DOI10.1090/S0002-9939-04-07525-2
  34. Verdier, J.-L., On derived categories of abelian categories, G. Maltsiniotis Astérisque 239 Société Mathématique de France, Paris French (1996). (1996) MR1453167
  35. Verdier, J.-L., Catégories dérivées. Quelques résultats (Etat O), Cohomologie étale. Séminaire de géométrie algébrique du Bois-Marie SGA 4 1/2; Lecture Notes in Mathematics 569 Springer, Berlin French 262-311 (1977). (1977) Zbl0407.18008MR0463174
  36. Yassemi, S., G-dimension, Math. Scand. 77 (1995), 161-174. (1995) Zbl0864.13010MR1379262

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.