On the bounds of Laplacian eigenvalues of -connected graphs
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 3, page 701-712
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChen, Xiaodan, and Hou, Yaoping. "On the bounds of Laplacian eigenvalues of $k$-connected graphs." Czechoslovak Mathematical Journal 65.3 (2015): 701-712. <http://eudml.org/doc/271824>.
@article{Chen2015,
abstract = {Let $\mu _\{n-1\}(G)$ be the algebraic connectivity, and let $\mu _\{1\}(G)$ be the Laplacian spectral radius of a $k$-connected graph $G$ with $n$ vertices and $m$ edges. In this paper, we prove that \begin\{equation*\} \mu \_\{n-1\}(G)\ge \frac\{2nk^2\}\{(n(n-1)-2m)(n+k-2)+2k^2\}, \end\{equation*\}
with equality if and only if $G$ is the complete graph $K_n$ or $K_\{n\}-e$. Moreover, if $G$ is non-regular, then \begin\{equation*\} \mu \_1(G)<2\Delta -\frac\{2(n\Delta -2m)k^2\}\{2(n\Delta -2m)(n^2-2n+2k)+nk^2\}, \end\{equation*\}
where $\Delta $ stands for the maximum degree of $G$. Remark that in some cases, these two inequalities improve some previously known results.},
author = {Chen, Xiaodan, Hou, Yaoping},
journal = {Czechoslovak Mathematical Journal},
keywords = {$k$-connected graph; non-regular graph; algebraic connectivity; Laplacian spectral radius; maximum degree},
language = {eng},
number = {3},
pages = {701-712},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the bounds of Laplacian eigenvalues of $k$-connected graphs},
url = {http://eudml.org/doc/271824},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Chen, Xiaodan
AU - Hou, Yaoping
TI - On the bounds of Laplacian eigenvalues of $k$-connected graphs
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 3
SP - 701
EP - 712
AB - Let $\mu _{n-1}(G)$ be the algebraic connectivity, and let $\mu _{1}(G)$ be the Laplacian spectral radius of a $k$-connected graph $G$ with $n$ vertices and $m$ edges. In this paper, we prove that \begin{equation*} \mu _{n-1}(G)\ge \frac{2nk^2}{(n(n-1)-2m)(n+k-2)+2k^2}, \end{equation*}
with equality if and only if $G$ is the complete graph $K_n$ or $K_{n}-e$. Moreover, if $G$ is non-regular, then \begin{equation*} \mu _1(G)<2\Delta -\frac{2(n\Delta -2m)k^2}{2(n\Delta -2m)(n^2-2n+2k)+nk^2}, \end{equation*}
where $\Delta $ stands for the maximum degree of $G$. Remark that in some cases, these two inequalities improve some previously known results.
LA - eng
KW - $k$-connected graph; non-regular graph; algebraic connectivity; Laplacian spectral radius; maximum degree
UR - http://eudml.org/doc/271824
ER -
References
top- Cvetković, D., Rowlinson, P., Simić, S., An Introduction to the Theory of Graph Spectra, London Mathematical Society Student Texts 75 Cambridge University Press, Cambridge (2010). (2010) Zbl1211.05002MR2571608
- Abreu, N. M. M. de, 10.1016/j.laa.2006.08.017, Linear Algebra Appl. 423 (2007), 53-73. (2007) Zbl1115.05056MR2312323DOI10.1016/j.laa.2006.08.017
- Diestel, R., Graph Theory, Graduate Texts in Mathematics 173 Springer, Berlin (2010). (2010) Zbl1209.00049MR2744811
- Fiedler, M., Algebraic connectivity of graphs, Czech. Math. J. 23 (1973), 298-305. (1973) Zbl0265.05119MR0318007
- Kirkland, S. J., Molitierno, J. J., Neumann, M., Shader, B. L., On graphs with equal algebraic and vertex connectivity, Linear Algebra Appl. 341 (2002), 45-56. (2002) Zbl0991.05071MR1873608
- Li, J., Shiu, W. C., Chang, A., 10.1007/s10587-010-0052-0, Czech. Math. J. 60 (2010), 835-847. (2010) Zbl1224.05304MR2672418DOI10.1007/s10587-010-0052-0
- Lu, M., Zhang, L.-Z., Tian, F., Lower bounds of the Laplacian spectrum of graphs based on diameter, Linear Algebra Appl. 420 (2007), 400-406. (2007) Zbl1106.05064MR2278217
- Merris, R., Laplacian matrices of graphs: A survey, Linear Algebra Appl. 197-198 (1994), 143-176. (1994) Zbl0802.05053MR1275613
- Mohar, B., 10.1007/BF01789463, Graphs Comb. 7 (1991), 53-64. (1991) Zbl0771.05063MR1105467DOI10.1007/BF01789463
- Ning, W., Li, H., Lu, M., 10.1016/j.laa.2012.10.024, Linear Algebra Appl. 438 (2013), 2280-2288. (2013) Zbl1258.05074MR3005290DOI10.1016/j.laa.2012.10.024
- Shi, L., 10.1016/j.laa.2006.12.003, Linear Algebra Appl. 422 (2007), 755-770. (2007) Zbl1113.05065MR2305155DOI10.1016/j.laa.2006.12.003
- Zhang, X.-D., Luo, R., The spectral radius of triangle-free graphs, Australas. J. Comb. (electronic only) 26 (2002), 33-39. (2002) Zbl1008.05089MR1918140
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.