On annealed elliptic Green's function estimates
Mathematica Bohemica (2015)
- Volume: 140, Issue: 4, page 489-506
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topMarahrens, Daniel, and Otto, Felix. "On annealed elliptic Green's function estimates." Mathematica Bohemica 140.4 (2015): 489-506. <http://eudml.org/doc/271826>.
@article{Marahrens2015,
abstract = {We consider a random, uniformly elliptic coefficient field $a$ on the lattice $\mathbb \{Z\}^d$. The distribution $\langle \cdot \rangle $ of the coefficient field is assumed to be stationary. Delmotte and Deuschel showed that the gradient and second mixed derivative of the parabolic Green’s function $G(t,x,y)$ satisfy optimal annealed estimates which are $L^2$ and $L^1$, respectively, in probability, i.e., they obtained bounds on $\smash\{\langle |\nabla _x G(t,x,y)|^2\rangle ^\{\{1\}/\{2\}\}\}$ and $\langle |\nabla _x \nabla _y G(t,x,y)|\rangle $. In particular, the elliptic Green’s function $G(x,y)$ satisfies optimal annealed bounds. In their recent work, the authors extended these elliptic bounds to higher moments, i.e., $L^p$ in probability for all $p<\infty $. In this note, we present a new argument that relies purely on elliptic theory to derive the elliptic estimates for $\langle |\nabla _x G(x,y)|^2\rangle ^\{\{1\}/\{2\}\}$ and $\langle |\nabla _x \nabla _y G(x,y)|\rangle $.},
author = {Marahrens, Daniel, Otto, Felix},
journal = {Mathematica Bohemica},
keywords = {stochastic homogenization; elliptic equation; Green’s function on $\mathbb \{Z\}^d$; annealed estimate},
language = {eng},
number = {4},
pages = {489-506},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On annealed elliptic Green's function estimates},
url = {http://eudml.org/doc/271826},
volume = {140},
year = {2015},
}
TY - JOUR
AU - Marahrens, Daniel
AU - Otto, Felix
TI - On annealed elliptic Green's function estimates
JO - Mathematica Bohemica
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 140
IS - 4
SP - 489
EP - 506
AB - We consider a random, uniformly elliptic coefficient field $a$ on the lattice $\mathbb {Z}^d$. The distribution $\langle \cdot \rangle $ of the coefficient field is assumed to be stationary. Delmotte and Deuschel showed that the gradient and second mixed derivative of the parabolic Green’s function $G(t,x,y)$ satisfy optimal annealed estimates which are $L^2$ and $L^1$, respectively, in probability, i.e., they obtained bounds on $\smash{\langle |\nabla _x G(t,x,y)|^2\rangle ^{{1}/{2}}}$ and $\langle |\nabla _x \nabla _y G(t,x,y)|\rangle $. In particular, the elliptic Green’s function $G(x,y)$ satisfies optimal annealed bounds. In their recent work, the authors extended these elliptic bounds to higher moments, i.e., $L^p$ in probability for all $p<\infty $. In this note, we present a new argument that relies purely on elliptic theory to derive the elliptic estimates for $\langle |\nabla _x G(x,y)|^2\rangle ^{{1}/{2}}$ and $\langle |\nabla _x \nabla _y G(x,y)|\rangle $.
LA - eng
KW - stochastic homogenization; elliptic equation; Green’s function on $\mathbb {Z}^d$; annealed estimate
UR - http://eudml.org/doc/271826
ER -
References
top- Aronson, D. G., 10.1090/S0002-9904-1967-11830-5, Bull. Am. Math. Soc. 73 (1967), 890-896. (1967) Zbl0153.42002MR0217444DOI10.1090/S0002-9904-1967-11830-5
- Delmotte, T., 10.4171/RMI/254, Rev. Mat. Iberoam. 15 (1999), 181-232. (1999) Zbl0922.60060MR1681641DOI10.4171/RMI/254
- Delmotte, T., Deuschel, J.-D., 10.1007/s00440-005-0430-y, Probab. Theory Relat. Fields 133 (2005), 358-390. (2005) Zbl1083.60082MR2198017DOI10.1007/s00440-005-0430-y
- Lamacz, A., Neukamm, S., Otto, F., Moment bounds for the corrector in stochastic homogenization of a percolation model, Electron J. Probab. 20 Article 106, 30 pages, http://ejp.ejpecp.org/article/view/3618 (2015). (2015) Zbl1326.39015MR3418538
- Marahrens, D., Otto, F., 10.1007/s00440-014-0598-0, (to appear) in Probab. Theory Relat. Fields, http://dx.doi.org/10.1007/s00440-014-0598-0. MR3418749DOI10.1007/s00440-014-0598-0
- Nash, J. F., 10.2307/2372841, Am. J. Math. 80 (1958), 931-954. (1958) Zbl0096.06902MR0100158DOI10.2307/2372841
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.