Ergodicity for a stochastic geodesic equation in the tangent bundle of the 2D sphere
Ľubomír Baňas; Zdzisław Brzeźniak; Mikhail Neklyudov; Martin Ondreját; Andreas Prohl
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 3, page 617-657
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBaňas, Ľubomír, et al. "Ergodicity for a stochastic geodesic equation in the tangent bundle of the 2D sphere." Czechoslovak Mathematical Journal 65.3 (2015): 617-657. <http://eudml.org/doc/271838>.
@article{Baňas2015,
abstract = {We study ergodic properties of stochastic geometric wave equations on a particular model with the target being the 2D sphere while considering only solutions which are independent of the space variable. This simplification leads to a degenerate stochastic equation in the tangent bundle of the 2D sphere. Studying this equation, we prove existence and non-uniqueness of invariant probability measures for the original problem and obtain also results on attractivity towards an invariant measure. We also present a structure-preserving numerical scheme to approximate solutions and provide computational experiments to motivate and illustrate the theoretical results.},
author = {Baňas, Ľubomír, Brzeźniak, Zdzisław, Neklyudov, Mikhail, Ondreját, Martin, Prohl, Andreas},
journal = {Czechoslovak Mathematical Journal},
keywords = {geometric stochastic wave equation; stochastic geodesic equation; ergodicity; attractivity; invariant measure; numerical approximation},
language = {eng},
number = {3},
pages = {617-657},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Ergodicity for a stochastic geodesic equation in the tangent bundle of the 2D sphere},
url = {http://eudml.org/doc/271838},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Baňas, Ľubomír
AU - Brzeźniak, Zdzisław
AU - Neklyudov, Mikhail
AU - Ondreját, Martin
AU - Prohl, Andreas
TI - Ergodicity for a stochastic geodesic equation in the tangent bundle of the 2D sphere
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 3
SP - 617
EP - 657
AB - We study ergodic properties of stochastic geometric wave equations on a particular model with the target being the 2D sphere while considering only solutions which are independent of the space variable. This simplification leads to a degenerate stochastic equation in the tangent bundle of the 2D sphere. Studying this equation, we prove existence and non-uniqueness of invariant probability measures for the original problem and obtain also results on attractivity towards an invariant measure. We also present a structure-preserving numerical scheme to approximate solutions and provide computational experiments to motivate and illustrate the theoretical results.
LA - eng
KW - geometric stochastic wave equation; stochastic geodesic equation; ergodicity; attractivity; invariant measure; numerical approximation
UR - http://eudml.org/doc/271838
ER -
References
top- Aida, S., Kusuoka, S., Stroock, D., On the support of Wiener functionals, Asymptotic Problems in Probability Theory: Wiener Functionals and Asymptotics. Proc. Conf., Sanda and Kyoto, Japan, 1990 K. D. Elworthy et al. Pitman Res. Notes Math. Ser. 284 Longman Scientific & Technical, Harlow, Essex; John Wiley & Sons, New York (1993), 3-34. (1993) Zbl0790.60047MR1354161
- Arnold, L., Kliemann, W., 10.1080/17442508708833450, Stochastics 21 (1987), 41-61. (1987) Zbl0617.60076MR0899954DOI10.1080/17442508708833450
- Baňas, Ľ., Brzeźniak, Z., Neklyudov, M., Prohl, A., 10.1093/imanum/drt020, IMA J. Numer. Anal. 34 (2014), 502-549. (2014) Zbl1298.65012MR3194798DOI10.1093/imanum/drt020
- Baňas, Ľ., Brzeźniak, Z., Neklyudov, M., Prohl, A., Stochastic Ferromagnetism. Analysis and Numerics, De Gruyter Studies in Mathematics 58 De Gruyter, Berlin (2014). (2014) Zbl1288.82001MR3157451
- Baňas, Ľ., Prohl, A., Schätzle, R., 10.1007/s00211-009-0282-y, Numer. Math. 115 (2010), 395-432. (2010) Zbl1203.65174MR2640052DOI10.1007/s00211-009-0282-y
- Bartels, S., Lubich, C., Prohl, A., 10.1090/S0025-5718-09-02221-2, Math. Comput. 78 (2009), 1269-1292. (2009) Zbl1198.65178MR2501050DOI10.1090/S0025-5718-09-02221-2
- Arous, G. Ben, Grădinaru, M., Hölder norms and the support theorem for diffusions, C. R. Acad. Sci., Paris, Sér. I 316 French (1993), 283-286. (1993) MR1205200
- Arous, G. Ben, Grădinaru, M., Ledoux, M., Hölder norms and the support theorem for diffusions, Ann. Inst. Henri Poincaré, Probab. Stat. 30 (1994), 415-436. (1994) MR1288358
- Brzeźniak, Z., Ondreját, M., 10.1214/11-AOP690, Ann. Probab. 41 (2013), 1938-1977. (2013) Zbl1286.60058MR3098063DOI10.1214/11-AOP690
- Brzeźniak, Z., Ondreját, M., 10.1080/03605302.2011.574243, Commun. Partial Differ. Equations 36 (2011), 1624-1653. (2011) Zbl1238.60073MR2825605DOI10.1080/03605302.2011.574243
- Brzeźniak, Z., Ondreját, M., 10.1016/j.jfa.2007.03.034, J. Funct. Anal. 253 (2007), 449-481. (2007) Zbl1141.58019MR2370085DOI10.1016/j.jfa.2007.03.034
- Cabaña, E. M., 10.1007/BF00538902, Z. Wahrscheinlichkeitstheor. Verw. Geb. 22 (1972), 13-24. (1972) Zbl0214.16801MR0322974DOI10.1007/BF00538902
- Carmona, R., Nualart, D., 10.1214/aop/1176991784, Ann. Probab. 16 (1988), 730-751. (1988) Zbl0643.60045MR0929075DOI10.1214/aop/1176991784
- Carmona, R., Nualart, D., 10.1007/BF00318783, Probab. Theory Relat. Fields 79 (1988), 469-508. (1988) Zbl0635.60073MR0966173DOI10.1007/BF00318783
- Chow, P.-L., 10.1214/aoap/1015961168, Ann. Appl. Probab. 12 (2002), 361-381. (2002) Zbl1017.60071MR1890069DOI10.1214/aoap/1015961168
- Prato, G. Da, Zabczyk, J., Ergodicity for Infinite-Dimensional Systems, London Mathematical Society Lecture Note Series 229 Cambridge Univ. Press, Cambridge (1996). (1996) Zbl0849.60052MR1417491
- Prato, G. Da, Zabczyk, J., Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and Its Applications 44 Cambridge University Press, Cambridge (1992). (1992) Zbl0761.60052MR1207136
- Dalang, R. C., Frangos, N. E., 10.1214/aop/1022855416, Ann. Probab. 26 (1998), 187-212. (1998) Zbl0938.60046MR1617046DOI10.1214/aop/1022855416
- Dalang, R. C., Lévêque, O., 10.1214/aop/1079021472, Ann. Probab. 32 (2004), 1068-1099. (2004) Zbl1046.60058MR2044674DOI10.1214/aop/1079021472
- Diaconis, P., Freedman, D., On the hit and run process, University of California Berkeley, Statistics Technical Report no. 497, http://stat-reports.lib.berkeley.edu/accessPages/497.html (1997). (1997)
- Ginibre, J., Velo, G., 10.1016/0003-4916(82)90077-X, Ann. Phys. 142 (1982), 393-415. (1982) MR0678488DOI10.1016/0003-4916(82)90077-X
- Gyöngy, I., Pröhle, T., 10.1016/0898-1221(90)90082-U, Comput. Math. Appl. 19 (1990), 65-70. (1990) Zbl0711.60051MR1026782DOI10.1016/0898-1221(90)90082-U
- Hörmander, L., 10.1007/BF02392081, Acta Math. 119 (1967), 147-171. (1967) Zbl0156.10701MR0222474DOI10.1007/BF02392081
- Ichihara, K., Kunita, H., 10.1007/BF00533476, Z. Wahrscheinlichkeitstheor. Verw. Geb. 30 (1974), 235-254. (1974) Zbl0326.60097MR0381007DOI10.1007/BF00533476
- Ichihara, K., Kunita, H., 10.1007/BF01844875, Z. Wahrscheinlichkeitstheor. Verw. Geb. 39 (1977), 81-84. (1977) Zbl0382.60069MR0488328DOI10.1007/BF01844875
- Ikeda, N., Watanabe, S., Stochastic Differential Equations and Diffusion Processes, North-Holland Mathematical Library 24 North-Holland; Publishing Co. Tokyo: Kodansha, Amsterdam (1989). (1989) Zbl0684.60040MR1011252
- Karczewska, A., Zabczyk, J., Stochastic {PDE}'s with function-valued solutions, Infinite Dimensional Stochastic Analysis. Proceedings of the Colloquium, Amsterdam, Netherlands, 1999 P. Clément et al. Verh. Afd. Natuurkd. 1. Reeks. K. Ned. Akad. Wet. 52 Royal Netherlands Academy of Arts and Sciences, Amsterdam (2000), 197-216. (2000) Zbl0990.60065MR1832378
- Karczewska, A., Zabczyk, J., A note on stochastic wave equations, Evolution Equations and Their Applications in Physical and Life Sciences. Proc. Conf., Germany, 1999 G. Lumer et al. Lecture Notes in Pure and Appl. Math. 215 Marcel Dekker, New York (2001), 501-511. (2001) Zbl0978.60066MR1818028
- Marcus, M., Mizel, V. J., 10.1080/17442509108833720, Stochastics Stochastics Rep. 36 (1991), 225-244. (1991) Zbl0739.60059MR1128496DOI10.1080/17442509108833720
- Maslowski, B., Seidler, J., Vrkoč, I., Integral continuity and stability for stochastic hyperbolic equations, Differ. Integral Equ. 6 (1993), 355-382. (1993) Zbl0777.35096MR1195388
- Matskyavichyus, V., The support of the solution of a stochastic differential equation, Lith. Math. J. 26 (1986), 91-98 Russian English translation Lith. Math. J. 26 57-62 (1986). (1986) MR0847207
- Mattingly, J. C., Stuart, A. M., Higham, D. J., Ergodicity for {SDE}s and approximations: locally Lipschitz vector fields and degenerate noise, Stochastic Processes Appl. 101 (2002), 185-232. (2002) Zbl1075.60072MR1931266
- Meyn, S., Tweedie, R. L., Markov Chains and Stochastic Stability, With a prologue by Peter W. Glynn Cambridge University Press Cambridge (2009). (2009) Zbl1165.60001MR2509253
- Millet, A., Morien, P.-L., 10.1214/aoap/1015345353, Ann. Appl. Probab. 11 (2001), 922-951. (2001) Zbl1017.60072MR1865028DOI10.1214/aoap/1015345353
- Millet, A., Sanz-Solé, M., 10.1214/aop/1022677387, Ann. Probab. 27 (1999), 803-844. (1999) MR1698971DOI10.1214/aop/1022677387
- Ondreját, M., 10.1142/S0219493706001633, Stoch. Dyn. 6 (2006), 23-52. (2006) Zbl1092.60024MR2210680DOI10.1142/S0219493706001633
- Ondreját, M., 10.1007/s00028-003-0130-y, J. Evol. Equ. 4 (2004), 169-191. (2004) Zbl1054.60068MR2059301DOI10.1007/s00028-003-0130-y
- Peszat, S., 10.1007/PL00013197, J. Evol. Equ. 2 (2002), 383-394. (2002) MR1930613DOI10.1007/PL00013197
- Peszat, S., Zabczyk, J., 10.1007/s004400050257, Probab. Theory Relat. Fields 116 (2000), 421-443. (2000) Zbl0959.60044MR1749283DOI10.1007/s004400050257
- Peszat, S., Zabczyk, J., 10.1016/S0304-4149(97)00089-6, Stochastic Processes Appl. 72 (1997), 187-204. (1997) Zbl0943.60048MR1486552DOI10.1016/S0304-4149(97)00089-6
- Shatah, J., Struwe, M., Geometric Wave Equations, Courant Lecture Notes in Mathematics 2 New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence (1998). (1998) Zbl0993.35001MR1674843
- Stroock, D. W., Varadhan, S. R. S., On the support of diffusion processes with applications to the strong maximum principle, Proc. Conf. Berkeley, Calififornia, 1970/1971, Vol. III: Probability Theory L. M. Le Cam et al. Univ. California Press Berkeley, Calififornia (1972), 333-359. (1972) Zbl0255.60056MR0400425
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.