Existence results for systems with nonlinear coupled nonlocal initial conditions

Octavia Bolojan; Gennaro Infante; Radu Precup

Mathematica Bohemica (2015)

  • Volume: 140, Issue: 4, page 371-384
  • ISSN: 0862-7959

Abstract

top
The purpose of the present paper is to study the existence of solutions to initial value problems for nonlinear first order differential systems subject to nonlinear nonlocal initial conditions of functional type. The approach uses vector-valued metrics and matrices convergent to zero. Two existence results are given by means of Schauder and Leray-Schauder fixed point principles and the existence and uniqueness of the solution is obtained via a fixed point theorem due to Perov. Two examples are given to illustrate the theory.

How to cite

top

Bolojan, Octavia, Infante, Gennaro, and Precup, Radu. "Existence results for systems with nonlinear coupled nonlocal initial conditions." Mathematica Bohemica 140.4 (2015): 371-384. <http://eudml.org/doc/271839>.

@article{Bolojan2015,
abstract = {The purpose of the present paper is to study the existence of solutions to initial value problems for nonlinear first order differential systems subject to nonlinear nonlocal initial conditions of functional type. The approach uses vector-valued metrics and matrices convergent to zero. Two existence results are given by means of Schauder and Leray-Schauder fixed point principles and the existence and uniqueness of the solution is obtained via a fixed point theorem due to Perov. Two examples are given to illustrate the theory.},
author = {Bolojan, Octavia, Infante, Gennaro, Precup, Radu},
journal = {Mathematica Bohemica},
keywords = {nonlinear differential system; nonlocal boundary condition; nonlinear boundary condition; fixed point; vector-valued norm; matrix convergent to zero},
language = {eng},
number = {4},
pages = {371-384},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence results for systems with nonlinear coupled nonlocal initial conditions},
url = {http://eudml.org/doc/271839},
volume = {140},
year = {2015},
}

TY - JOUR
AU - Bolojan, Octavia
AU - Infante, Gennaro
AU - Precup, Radu
TI - Existence results for systems with nonlinear coupled nonlocal initial conditions
JO - Mathematica Bohemica
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 140
IS - 4
SP - 371
EP - 384
AB - The purpose of the present paper is to study the existence of solutions to initial value problems for nonlinear first order differential systems subject to nonlinear nonlocal initial conditions of functional type. The approach uses vector-valued metrics and matrices convergent to zero. Two existence results are given by means of Schauder and Leray-Schauder fixed point principles and the existence and uniqueness of the solution is obtained via a fixed point theorem due to Perov. Two examples are given to illustrate the theory.
LA - eng
KW - nonlinear differential system; nonlocal boundary condition; nonlinear boundary condition; fixed point; vector-valued norm; matrix convergent to zero
UR - http://eudml.org/doc/271839
ER -

References

top
  1. Agarwal, R. P., Meehan, M., O'Regan, D., 10.1017/CBO9780511543005, Cambridge Tracts in Mathematics 141 Cambridge University Press, Cambridge (2001). (2001) Zbl0960.54027MR1825411DOI10.1017/CBO9780511543005
  2. Aizicovici, S., Lee, H., 10.1016/j.aml.2004.01.010, Appl. Math. Lett. 18 (2005), 401-407. (2005) Zbl1084.34002MR2124297DOI10.1016/j.aml.2004.01.010
  3. Alves, E., Ma, T. F., Pelicer, M. L., 10.1016/j.na.2009.02.051, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 3834-3841. (2009) Zbl1177.34030MR2536292DOI10.1016/j.na.2009.02.051
  4. Avalishvili, G., Avalishvili, M., Gordeziani, D., 10.1016/j.aml.2010.11.014, Appl. Math. Lett. 24 (2011), 566-571. (2011) Zbl1205.35085MR2749746DOI10.1016/j.aml.2010.11.014
  5. Avalishvili, G., Avalishvili, M., Gordeziani, D., On integral nonlocal boundary value problems for some partial differential equations, Bull. Georgian Natl. Acad. Sci. (N.S.) 5 (2011), 31-37. (2011) Zbl1227.35015MR2839392
  6. Benchohra, M., Boucherif, A., On first order multivalued initial and periodic value problems, Dyn. Syst. Appl. 9 (2000), 559-568. (2000) Zbl1019.34008MR1843699
  7. Berman, A., Plemmons, R. J., Nonnegative Matrices in the Mathematical Sciences, Classics in Applied Mathematics 9 SIAM, Philadelphia (1994). (1994) Zbl0815.15016MR1298430
  8. Bolojan-Nica, O., Infante, G., Pietramala, P., 10.3846/13926292.2013.865678, Math. Model. Anal. 18 (2013), 599-611. (2013) Zbl1301.34017MR3175667DOI10.3846/13926292.2013.865678
  9. Bolojan-Nica, O., Infante, G., Precup, R., Existence results for systems with coupled nonlocal initial conditions, Nonlinear Anal. 94 (2014), 231-242. (2014) Zbl1288.34019MR3120688
  10. Boucherif, A., 10.1016/S0893-9659(01)00151-3, Appl. Math. Lett. 15 (2002), 409-414. (2002) Zbl1025.34009MR1902272DOI10.1016/S0893-9659(01)00151-3
  11. Boucherif, A., Nonlocal Cauchy problems for first-order multivalued differential equations, Electron. J. Differ. Equ. (electronic only) 2002 (2002), Article No. 47, 9 pages. (2002) Zbl1011.34002MR1907723
  12. Boucherif, A., 10.1016/S0362-546X(01)00365-0, Proceedings of the Third World Congress of Nonlinear Analysts 47, Part 4, Catania, 2000 Elsevier Oxford Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 47 (2001), 2419-2430. (2001) Zbl1042.34518MR1971648DOI10.1016/S0362-546X(01)00365-0
  13. Boucherif, A., Precup, R., Semilinear evolution equations with nonlocal initial conditions, Dynam. Systems Appl. 16 (2007), 507-516. (2007) MR2356335
  14. Boucherif, A., Precup, R., On the nonlocal initial value problem for first order differential equations, Fixed Point Theory 4 (2003), 205-212. (2003) Zbl1050.34001MR2031390
  15. Byszewski, L., Abstract nonlinear nonlocal problems and their physical interpretation, Biomathematics, Bioinformatics and Applications of Functional Differential Difference Equations H. Akca et al. Akdeniz Univ. Publ. Antalya, Turkey (1999). (1999) 
  16. Byszewski, L., 10.1016/0022-247X(91)90164-U, J. Math. Anal. Appl. 162 (1991), 494-505. (1991) Zbl0748.34040MR1137634DOI10.1016/0022-247X(91)90164-U
  17. Byszewski, L., Lakshmikantham, V., 10.1080/00036819008839989, Appl. Anal. 40 (1991), 11-19. (1991) Zbl0694.34001MR1121321DOI10.1080/00036819008839989
  18. Cabada, A., An overview of the lower and upper solutions method with nonlinear boundary value conditions, Bound. Value Probl. (electronic only) 2011 (2011), Article No. 893753, 18 pages. (2011) Zbl1230.34001MR2719294
  19. Cabada, A., Minhós, F. M., 10.1016/j.jmaa.2007.08.026, J. Math. Anal. Appl. 340 (2008), 239-251. (2008) Zbl1138.34008MR2376151DOI10.1016/j.jmaa.2007.08.026
  20. Cabada, A., Tersian, S., 10.1016/j.amc.2012.11.066, Appl. Math. Comput. 219 (2013), 5261-5267. (2013) Zbl1294.34016MR3009485DOI10.1016/j.amc.2012.11.066
  21. Deimling, K., Multivalued Differential Equations, W. de Gruyter Series in Nonlinear Analysis and Applications 1 Walter de Gruyter, Berlin (1992). (1992) Zbl0820.34009MR1189795
  22. Franco, D., O'Regan, D., Perán, J., 10.1016/j.cam.2004.04.013, J. Comput. Appl. Math. 174 (2005), 315-327. (2005) Zbl1068.34013MR2106442DOI10.1016/j.cam.2004.04.013
  23. Frigon, M., Applications of the Theory of Topological Transversality to Nonlinear Problems for Ordinary Differential Equations, Diss. Math. (Rozprawy Mat.) 296 French (1990). (1990) MR1075674
  24. Frigon, M., Lee, J. W., 10.12775/TMNA.1993.009, Topol. Methods Nonlinear Anal. 1 (1993), 95-111. (1993) Zbl0790.34054MR1215260DOI10.12775/TMNA.1993.009
  25. Goodrich, C. S., 10.1016/j.na.2012.07.023, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 76 (2013), 58-67. (2013) Zbl1264.34030MR2974249DOI10.1016/j.na.2012.07.023
  26. Goodrich, C. S., 10.1002/mana.201100210, Math. Nachr. 285 (2012), 1404-1421. (2012) Zbl1252.34032MR2959967DOI10.1002/mana.201100210
  27. Goodrich, C. S., 10.1016/j.na.2011.08.044, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 417-432. (2012) Zbl1237.34153MR2846811DOI10.1016/j.na.2011.08.044
  28. Han, H.-K., Park, J.-Y., 10.1006/jmaa.1998.6199, J. Math. Anal. Appl. 230 (1999), 242-250. (1999) Zbl0917.93009MR1669625DOI10.1006/jmaa.1998.6199
  29. Infante, G., Nonlocal boundary value problems with two nonlinear boundary conditions, Commun. Appl. Anal. 12 (2008), 279-288. (2008) Zbl1198.34025MR2499284
  30. Infante, G., Minhós, F. M., Pietramala, P., 10.1016/j.cnsns.2012.05.025, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 4952-4960. (2012) Zbl1280.34026MR2960289DOI10.1016/j.cnsns.2012.05.025
  31. Infante, G., Pietramala, P., 10.1002/mma.2957, Math. Methods Appl. Sci. 37 (2014), 2080-2090. (2014) Zbl1312.34060MR3248749DOI10.1002/mma.2957
  32. Infante, G., Pietramala, P., A cantilever equation with nonlinear boundary conditions, Electron. J. Qual. Theory Differ. Equ. (electronic only) 2009 (2009), Article No. 15, 14 pages. (2009) Zbl1201.34041MR2558840
  33. Infante, G., Pietramala, P., Eigenvalues and non-negative solutions of a system with nonlocal {BC}s, Nonlinear Stud. 16 (2009), 187-196. (2009) Zbl1184.34027MR2527180
  34. Infante, G., Pietramala, P., 10.1016/j.na.2008.11.095, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 1301-1310. (2009) Zbl1169.45001MR2527550DOI10.1016/j.na.2008.11.095
  35. Jackson, D., 10.1006/jmaa.1993.1022, J. Math. Anal. Appl. 172 (1993), 256-265. (1993) Zbl0814.35060MR1199510DOI10.1006/jmaa.1993.1022
  36. Jankowski, T., Ordinary differential equations with nonlinear boundary conditions, Georgian Math. J. 9 (2002), 287-294. (2002) Zbl1013.34018MR1916067
  37. Karakostas, G. L., Tsamatos, P. C., 10.12775/TMNA.2002.007, Topol. Methods Nonlinear Anal. 19 (2002), 109-121. (2002) Zbl1071.34023MR1921888DOI10.12775/TMNA.2002.007
  38. Nica, O., Existence results for second order three-point boundary value problems, Differ. Equ. Appl. 4 (2012), 547-570. (2012) Zbl1267.34040MR3052162
  39. Nica, O., Initial-value problems for first-order differential systems with general nonlocal conditions, Electron. J. Differ. Equ. (electronic only) 2012 (2012), Article No. 74, 15 pages. (2012) Zbl1261.34016MR2928611
  40. Nica, O., Nonlocal initial value problems for first order differential systems, Fixed Point Theory 13 (2012), 603-612. (2012) Zbl1286.34034MR3024343
  41. Nica, O., Precup, R., On the nonlocal initial value problem for first order differential systems, Stud. Univ. Babeş-Bolyai, Math. 56 (2011), 113-125. (2011) Zbl1274.34041MR2869720
  42. Ntouyas, S. K., Tsamatos, P. C., 10.1006/jmaa.1997.5425, J. Math. Anal. Appl. 210 (1997), Article No. ay975425, 679-687. (1997) Zbl0884.34069MR1453198DOI10.1006/jmaa.1997.5425
  43. O'Regan, D., Precup, R., Theorems of Leray-Schauder Type and Applications, Series in Mathematical Analysis and Applications 3 Gordon and Breach Science Publishers, London (2001). (2001) Zbl1045.47002MR1937722
  44. Pietramala, P., A note on a beam equation with nonlinear boundary conditions, Bound. Value Probl. (electronic only) 2011 (2011), Article No. 376782, 14 pages. (2011) Zbl1219.34028MR2679691
  45. Precup, R., 10.1016/j.mcm.2008.04.006, Math. Comput. Modelling 49 (2009), 703-708. (2009) Zbl1165.65336MR2483674DOI10.1016/j.mcm.2008.04.006
  46. Precup, R., Methods in Nonlinear Integral Equations, Kluwer Academic Publishers Dordrecht (2002). (2002) Zbl1060.65136MR2041579
  47. Varga, R. S., Matrix Iterative Analysis, Springer Series in Computational Mathematics 27 Springer, Dordrecht (2009). (2009) Zbl1216.65042MR1753713
  48. Webb, J. R. L., A unified approach to nonlocal boundary value problems, Dynamic Systems and Applications 5. Proc. of the 5th International Conf., Morehouse College, Atlanta, 2007 Dynamic Publishers Atlanta (2008), 510-515 G. S. Ladde et al. (2008) Zbl1203.34033MR2468188
  49. Webb, J. R. L., Infante, G., 10.3934/cpaa.2010.9.563, Commun. Pure Appl. Anal. 9 (2010), 563-581. (2010) Zbl1200.34025MR2600449DOI10.3934/cpaa.2010.9.563
  50. Webb, J. R. L., Infante, G., 10.1112/jlms/jdn066, J. Lond. Math. Soc., II. Ser. 79 (2009), 238-258. (2009) Zbl1165.34010MR2472143DOI10.1112/jlms/jdn066
  51. Webb, J. R. L., Infante, G., 10.1007/s00030-007-4067-7, NoDEA, Nonlinear Differ. Equ. Appl. 15 (2008), 45-67. (2008) Zbl1148.34021MR2408344DOI10.1007/s00030-007-4067-7
  52. Webb, J. R. L., Lan, K. Q., Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary value problems of local and nonlocal type, Topol. Methods Nonlinear Anal. 27 (2006), 91-115. (2006) Zbl1146.34020MR2236412
  53. Xue, X., 10.1007/s10114-005-0839-3, Acta Math. Sin., Engl. Ser. 23 (2007), 983-988. (2007) Zbl1129.34041MR2319608DOI10.1007/s10114-005-0839-3
  54. Xue, X., Existence of solutions for semilinear nonlocal Cauchy problems in Banach spaces, Electron. J. Differ. Equ. (electronic only) 2005 (2005), Article No. 64, 7 pages. (2005) Zbl1075.34051MR2147144

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.