On the strong metric dimension of the strong products of graphs
Dorota Kuziak; Ismael G. Yero; Juan A. Rodríguez-Velázquez
Open Mathematics (2015)
- Volume: 13, Issue: 1, page 209-210, electronic only
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topDorota Kuziak, Ismael G. Yero, and Juan A. Rodríguez-Velázquez. "On the strong metric dimension of the strong products of graphs." Open Mathematics 13.1 (2015): 209-210, electronic only. <http://eudml.org/doc/271930>.
@article{DorotaKuziak2015,
abstract = {Let G be a connected graph. A vertex w ∈ V.G/ strongly resolves two vertices u,v ∈ V.G/ if there exists some shortest u-w path containing v or some shortest v-w path containing u. A set S of vertices is a strong resolving set for G if every pair of vertices of G is strongly resolved by some vertex of S. The smallest cardinality of a strong resolving set for G is called the strong metric dimension of G. It is well known that the problem of computing this invariant is NP-hard. In this paper we study the problem of finding exact values or sharp bounds for the strong metric dimension of strong product graphs and express these in terms of invariants of the factor graphs.},
author = {Dorota Kuziak, Ismael G. Yero, Juan A. Rodríguez-Velázquez},
journal = {Open Mathematics},
keywords = {Strong metric dimension; Strong metric basis; Strong resolving set; Strong product graphs; strong metric dimension; strong metric basis; strong resolving set; strong product graphs},
language = {eng},
number = {1},
pages = {209-210, electronic only},
title = {On the strong metric dimension of the strong products of graphs},
url = {http://eudml.org/doc/271930},
volume = {13},
year = {2015},
}
TY - JOUR
AU - Dorota Kuziak
AU - Ismael G. Yero
AU - Juan A. Rodríguez-Velázquez
TI - On the strong metric dimension of the strong products of graphs
JO - Open Mathematics
PY - 2015
VL - 13
IS - 1
SP - 209
EP - 210, electronic only
AB - Let G be a connected graph. A vertex w ∈ V.G/ strongly resolves two vertices u,v ∈ V.G/ if there exists some shortest u-w path containing v or some shortest v-w path containing u. A set S of vertices is a strong resolving set for G if every pair of vertices of G is strongly resolved by some vertex of S. The smallest cardinality of a strong resolving set for G is called the strong metric dimension of G. It is well known that the problem of computing this invariant is NP-hard. In this paper we study the problem of finding exact values or sharp bounds for the strong metric dimension of strong product graphs and express these in terms of invariants of the factor graphs.
LA - eng
KW - Strong metric dimension; Strong metric basis; Strong resolving set; Strong product graphs; strong metric dimension; strong metric basis; strong resolving set; strong product graphs
UR - http://eudml.org/doc/271930
ER -
References
top- [1] Cáceres J. , Hernando C., Mora M., Pelayo I. M., Puertas M. L., Boundary-type sets and product operators in graphs, In: VII Jornadas de Matemática Discreta y Algorítmica, Castro Urdiales, Cantabria, Spain, July 2010 Zbl1207.05043
- [2] Cáceres J., Hernando C., Mora M., Pelayo I. M., Puertas M. L., Seara C., Wood D. R., On the metric dimension of Cartesian product of graphs, SIAM J. Discrete Math., 2007, 21(2), 273–302 [WoS] Zbl1139.05314
- [3] Cˇ ižek N., Klavžar S., On the chromatic number of the lexicographic product and the Cartesian sum of graphs, Discrete Math., 1994, 134(1-3), 17–24
- [4] Feng M., Wang K., On the metric dimension and fractional metric dimension of the hierarchical product of graphs, Appl. Anal. Discrete Math., 2013, 7, 302–313 [WoS][Crossref] Zbl06451378
- [5] Gallai T., Uber Extreme Punkt-und Kantenmengen, Ann. Univ. Sci. Budapest Eötvös Sect. Math., 1959, 2, 133–138 (in German)
- [6] Geller D., Stahl S., The chromatic number and other functions of the lexicographic product, J. Combin. Theory Ser. B, 1975, 19, 87–95 Zbl0282.05114
- [7] Hales R. S., Numerical invariants and the strong product of graphs, J. Combin. Theory Ser. B, 1973, 15, 146–155 Zbl0247.05122
- [8] Hammack R., Imrich W., Klavžar S., Handbook of Product Graphs, Second edition. With a foreword by Peter Winkler. Discrete Math. Appl. (Boca Raton), CRC Press, Boca Raton, FL, 2011 Zbl1283.05001
- [9] Harary F., Melter R. A., On the metric dimension of a graph, Ars Combin., 1976, 2, 191–195 Zbl0349.05118
- [10] Jannesari M., Omoomi B., The metric dimension of the lexicographic product of graphs, Discrete Math. 2012, 312(22), 3349–3356 Zbl1252.05187
- [11] Jha P. K., Slutzki G., Independence numbers of product graphs, Appl. Math. Lett., 1994, 7(4), 91–94 [Crossref] Zbl0811.05033
- [12] Johnson M. A., Structure-activity maps for visualizing the graph variables arising in drug design, J. Biopharm. Statist., 1993, 3, 203–236 [Crossref] Zbl0800.92106
- [13] Johnson M. A., Browsable structure-activity datasets, In: Advances in Molecular Similarity, R. Carbó–Dorca and P. Mezey, eds., JAI Press Connecticut, 1998, 153–170
- [14] Khuller S., Raghavachari B., Rosenfeld A., Landmarks in graphs, Discrete Appl. Math., 1996, 70, 217–229 Zbl0865.68090
- [15] Kratica J., Kovacˇevic´-Vujcˇic´ V., Cˇ angalovic´ M., Stojanovic´ M., Minimal doubly resolving sets and the strong metric dimension of Hamming graphs, Appl. Anal. Discrete Math., 2012, 6, 63–71 [Crossref][WoS]
- [16] Kuziak D., Yero I. G., Rodríguez-Velázquez J. A., On the strong metric dimension of corona product graphs and join graphs, Discrete Appl. Math., 2013, 161(7-8), 1022–1027 [WoS] Zbl1262.05133
- [17] Melter R. A., Tomescu I., Metric bases in digital geometry, Computer Vision, Graphics, and Image Processing, 1984, 25, 113–121 Zbl0591.51023
- [18] Oellermann O. R., Peters-Fransen J., The strong metric dimension of graphs and digraphs, Discrete Appl. Math., 2007, 155, 356–364 [WoS] Zbl1111.05030
- [19] Ore, O., Theory of graphs, Amer. Math. Soc. Colloq. Publ., 38, Amer. Math. Soc., Providence, R.I., 1962 Zbl0105.35401
- [20] Rodríguez-Velázquez J. A., Kuziak D., Yero I. G., Sigarreta J. M., The metric dimension of strong product graphs, Carpathian J. Math. (in press), preprint available at http://arxiv.org/abs/1305.0363 Zbl06582104
- [21] Saputro S., Simanjuntak R., Uttunggadewa S., Assiyatun H., Baskoro E., Salman A., Baˇca M., The metric dimension of the lexicographic product of graphs, Discrete Math., 2013, 313(9), 1045–1051 Zbl1263.05085
- [22] Scheinerman E., Ullman D., Fractional Graph Theory. A rational approach to the theory of graphs. With a foreword by Claude Berge, Wiley-Intersci. Ser. Discrete Math. Optim., A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1997 Zbl0891.05003
- [23] Seb˝o A., Tannier E., On metric generators of graphs, Math. Oper. Res., 2004, 29(2), 383–393 [Crossref] Zbl1082.05032
- [24] Slater P. J., Leaves of trees, In: Proceeding of the 6th Southeastern Conference on Combinatorics, Graph Theory, and Computing. Congr. Numer., 1975, 14, 549–559
- [25] Yero I. G., Kuziak D., Rodríguez-Velázquez J. A., On the metric dimension of corona product graphs, Comput. Math. Appl., 2011, 61(9), 2793–2798[WoS] Zbl1221.05252
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.