Supercritical super-brownian motion with a general branching mechanism and travelling waves

A. E. Kyprianou; R.-L. Liu; A. Murillo-Salas; Y.-X. Ren

Annales de l'I.H.P. Probabilités et statistiques (2012)

  • Volume: 48, Issue: 3, page 661-687
  • ISSN: 0246-0203

Abstract

top
We offer a probabilistic treatment of the classical problem of existence, uniqueness and asymptotics of monotone solutions to the travelling wave equation associated to the parabolic semi-group equation of a super-Brownian motion with a general branching mechanism. Whilst we are strongly guided by the reasoning in Kyprianou (Ann. Inst. Henri Poincaré Probab. Stat.40 (2004) 53–72) for branching Brownian motion, the current paper offers a number of new insights. Our analysis incorporates the role of Seneta–Heyde norming which, in the current setting, draws on classical work of Grey (J. Appl. Probab.11 (1974) 669–677). We give a pathwiseexplanation of Evans’ immortal particle picture (the spine decomposition) which uses the Dynkin–Kuznetsov -measure as a key ingredient. Moreover, in the spirit of Neveu’s stopping lines we make repeated use of Dynkin’s exit measures. Additional complications arise from the general nature of the branching mechanism. As a consequence of the analysis we also offer an exact X ( log X ) 2 moment dichotomy for the almost sure convergence of the so-called derivative martingale at its critical parameter to a non-trivial limit. This differs to the case of branching Brownian motion (Ann. Inst. Henri Poincaré Probab. Stat.40 (2004) 53–72), and branching random walk (Adv. in Appl. Probab.36 (2004) 544–581), where a moment ‘gap’ appears in the necessary and sufficient conditions. Our probabilistic treatment allows us to replicate known existence, uniqueness and asymptotic results for the travelling wave equation, which is related to a super-Brownian motion.

How to cite

top

Kyprianou, A. E., et al. "Supercritical super-brownian motion with a general branching mechanism and travelling waves." Annales de l'I.H.P. Probabilités et statistiques 48.3 (2012): 661-687. <http://eudml.org/doc/271940>.

@article{Kyprianou2012,
abstract = {We offer a probabilistic treatment of the classical problem of existence, uniqueness and asymptotics of monotone solutions to the travelling wave equation associated to the parabolic semi-group equation of a super-Brownian motion with a general branching mechanism. Whilst we are strongly guided by the reasoning in Kyprianou (Ann. Inst. Henri Poincaré Probab. Stat.40 (2004) 53–72) for branching Brownian motion, the current paper offers a number of new insights. Our analysis incorporates the role of Seneta–Heyde norming which, in the current setting, draws on classical work of Grey (J. Appl. Probab.11 (1974) 669–677). We give a pathwiseexplanation of Evans’ immortal particle picture (the spine decomposition) which uses the Dynkin–Kuznetsov $\mathbb \{N\}$-measure as a key ingredient. Moreover, in the spirit of Neveu’s stopping lines we make repeated use of Dynkin’s exit measures. Additional complications arise from the general nature of the branching mechanism. As a consequence of the analysis we also offer an exact $X(\log X)^\{2\}$ moment dichotomy for the almost sure convergence of the so-called derivative martingale at its critical parameter to a non-trivial limit. This differs to the case of branching Brownian motion (Ann. Inst. Henri Poincaré Probab. Stat.40 (2004) 53–72), and branching random walk (Adv. in Appl. Probab.36 (2004) 544–581), where a moment ‘gap’ appears in the necessary and sufficient conditions. Our probabilistic treatment allows us to replicate known existence, uniqueness and asymptotic results for the travelling wave equation, which is related to a super-Brownian motion.},
author = {Kyprianou, A. E., Liu, R.-L., Murillo-Salas, A., Ren, Y.-X.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {superprocesses; $\mathbb \{N\}$-measure; spine decomposition; additive martingale; derivative martingale; travelling waves; superprocess; spin decomposition; additive martingale; derivative martingale; travelling wave; supercriticality; general branching mechanism},
language = {eng},
number = {3},
pages = {661-687},
publisher = {Gauthier-Villars},
title = {Supercritical super-brownian motion with a general branching mechanism and travelling waves},
url = {http://eudml.org/doc/271940},
volume = {48},
year = {2012},
}

TY - JOUR
AU - Kyprianou, A. E.
AU - Liu, R.-L.
AU - Murillo-Salas, A.
AU - Ren, Y.-X.
TI - Supercritical super-brownian motion with a general branching mechanism and travelling waves
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2012
PB - Gauthier-Villars
VL - 48
IS - 3
SP - 661
EP - 687
AB - We offer a probabilistic treatment of the classical problem of existence, uniqueness and asymptotics of monotone solutions to the travelling wave equation associated to the parabolic semi-group equation of a super-Brownian motion with a general branching mechanism. Whilst we are strongly guided by the reasoning in Kyprianou (Ann. Inst. Henri Poincaré Probab. Stat.40 (2004) 53–72) for branching Brownian motion, the current paper offers a number of new insights. Our analysis incorporates the role of Seneta–Heyde norming which, in the current setting, draws on classical work of Grey (J. Appl. Probab.11 (1974) 669–677). We give a pathwiseexplanation of Evans’ immortal particle picture (the spine decomposition) which uses the Dynkin–Kuznetsov $\mathbb {N}$-measure as a key ingredient. Moreover, in the spirit of Neveu’s stopping lines we make repeated use of Dynkin’s exit measures. Additional complications arise from the general nature of the branching mechanism. As a consequence of the analysis we also offer an exact $X(\log X)^{2}$ moment dichotomy for the almost sure convergence of the so-called derivative martingale at its critical parameter to a non-trivial limit. This differs to the case of branching Brownian motion (Ann. Inst. Henri Poincaré Probab. Stat.40 (2004) 53–72), and branching random walk (Adv. in Appl. Probab.36 (2004) 544–581), where a moment ‘gap’ appears in the necessary and sufficient conditions. Our probabilistic treatment allows us to replicate known existence, uniqueness and asymptotic results for the travelling wave equation, which is related to a super-Brownian motion.
LA - eng
KW - superprocesses; $\mathbb {N}$-measure; spine decomposition; additive martingale; derivative martingale; travelling waves; superprocess; spin decomposition; additive martingale; derivative martingale; travelling wave; supercriticality; general branching mechanism
UR - http://eudml.org/doc/271940
ER -

References

top
  1. [1] D. G. Aronson and H. F. Weinberger. Multidimensional nonlinear diffusion arising in population genetics. Adv. Math.30 (1978) 33–76. Zbl0407.92014MR511740
  2. [2] J. D. Biggins and A. E. Kyprianou. Measure change in multitype branching. Adv. in Appl. Probab.36 (2004) 544–581. Zbl1056.60082MR2058149
  3. [3] M. Bramson. Convergence of solutions of the Kolmogorov equation to travelling waves. Mem. Amer. Math. Soc. 44 (1983) iv + 190 pp. Zbl0517.60083MR705746
  4. [4] B. Chauvin. Multiplicative martingales and stopping lines for branching Brownian motion. Ann. Probab.30 (1991) 1195–1205. Zbl0738.60079MR1112412
  5. [5] R. Durrett. Probability Theory and Examples, 2nd edition. Duxbury Press, 1996. Zbl1202.60002MR1609153
  6. [6] R. Durrett and C. Neuhauser. Particle systems and reaction-diffusion equations. Ann. Probab.22 (1994) 289–333. Zbl0799.60093MR1258879
  7. [7] E. B. Dynkin. A probabilistic approach to one class of non-linear differential equations. Probab. Theory Related Fields89 (1991) 89–115. Zbl0722.60062MR1109476
  8. [8] E. B. Dynkin. Branching particle systems and superprocesses. Ann. Probab.19 (1991) 1157–1194. Zbl0732.60092MR1112411
  9. [9] E. B. Dynkin. Superprocesses and partial differential equations. Ann. Probab.21 (1993) 1185–1262. Zbl0806.60066MR1235414
  10. [10] E. B. Dynkin. Branching exit Markov systems and superprocesses. Ann. Probab.29 (2001) 1833–1858. Zbl1014.60079MR1880244
  11. [11] E. B. Dynkin. Diffusions, Superdiffusions and Partial Differential Equations. Amer. Math. Soc., Providence, RI, 2002. Zbl0999.60003MR1883198
  12. [12] E. B. Dynkin and S. E. Kuznetsov. -measures for branching Markov exit systems and their applications to differential equations. Probab. Theory Related Fields130 (2004) 135–150. Zbl1068.31002MR2092876
  13. [13] J. Engländer and A. E. Kyprianou. Local extinction versus local exponential growth for spatial branching processes. Ann. Probab.32 (2004) 78–99. Zbl1056.60083MR2040776
  14. [14] S. N. Evans. Two representations of a conditioned superprocess. Proc. Roy. Soc. Edinburgh Sect. A123 (1993) 959–971. Zbl0784.60052MR1249698
  15. [15] P. C. Fife and J. B. McLeod. The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch. Ration. Mech. Anal.65 (1977) 335–361. Zbl0361.35035MR442480
  16. [16] R. A. Fisher. The wave of advance of advantageous genes. Ann. Eugenics7 (1937) 355–369. Zbl63.1111.04JFM63.1111.04
  17. [17] P. J. Fitzsimmons. Construction and regularity of measure-valued Markov branching processes. Israel J. Math.64 (1988) 337–361. Zbl0673.60089MR995575
  18. [18] Y. Git, J. W. Harris and S. C. Harris. Exponential growth rates in a typed branching diffusion. Ann. Appl. Probab.17 (2007) 609–653. Zbl1131.60077MR2308337
  19. [19] D. R. Grey. Asymptotic behavior of continuous time, continuous state-space branching processes. J. Appl. Probab.11 (1974) 669–677. Zbl0301.60060MR408016
  20. [20] R. Hardy and S. C. Harris. A spine approach to branching diffusions with applications to L p -convergence of martingales. In Séminaire de Probabilités XLII 281–330. Berlin, 2009. Zbl1193.60100MR2599214
  21. [21] S. C. Harris. Travelling waves for the F-K-P-P equation via probabilistic arguments. Proc. Roy. Soc. Edinburgh Sect. A129 (1999) 503–517. Zbl0946.35040MR1693633
  22. [22] S. C. Harris and M. Roberts. Measure changes with extinction. Stat. Probab. Lett.79 (2009) 1129–1133. Zbl1163.60309MR2510780
  23. [23] Y. Kametaka. On the nonlinear diffusion equation of Kolmogorov–Petrovskii–Piskunov type. Osaka J. Math.13 (1976) 11–66. Zbl0344.35050MR422875
  24. [24] A. Kolmogorov, I. Petrovskii and N. Piskounov. Étude de l’équation de la diffusion avec croissance de la quantité de la matière at son application a un problèm biologique. Moscow Univ. Math. Bull.1 (1937) 1–25. Zbl0018.32106
  25. [25] A. E. Kyprianou. Travelling wave solution to the K-P-P equation: Alternatives to Simon Harris’ probabilistic analysis Ann. Inst. Henri Poincaré Probab. Stat.40 (2004) 53–72. Zbl1042.60057MR2037473
  26. [26] A. E. Kyprianou. Asymptotic radial speed of the support of supercritical branching Brownian motion and super-Brownian motion in d . Markov Process. Related Fields11 (2005) 145–156. Zbl1076.60074
  27. [27] A. E. Kyprianou. Introductory Lectures on Fluctuations of Lévy Processes with Applications. Springer, Berlin, 2006. Zbl06176054
  28. [28] A. E. Kyprianou and A. Murillo-Salas. Super-Brownian motion: L p -convergence of martingales through the pathwise spine decomposition. Preprint, 2011. Available at http://arxiv.org/abs/1106.2678. Zbl1279.60111
  29. [29] K.-S. Lau. On the nonlinear diffusion equation of Kolmogorov, Petrovsky, and Piscounov. J. Differential Equations 59 (1985) 44–70. Zbl0584.35091
  30. [30] J. F. Le Gall. Spatial Branching Processes, Random Snakes and Partial Differential Equations. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel, 1999. Zbl0938.60003
  31. [31] R.-L. Liu, Y.-X. Ren and R. Song. L log L criterion for a class of superdiffusions. J. Appl. Probab.46 (2009) 479–496. Zbl1175.60077
  32. [32] R. Lyons. A simple path to Biggins’ martingale convergence theorem. In Classical and Modern Branching Processes 217–222. K. B. Athreya and P. Jagers (Eds). Springer, New York, 1997. Zbl0897.60086
  33. [33] R. Lyons, R. Pemantle and Y. Peres. Conceptual proofs of L log L criteria for mean behaviour of branching processes. Ann. Probab.23 (1995) 1125–1138. Zbl0840.60077
  34. [34] P. Maillard. The number of absorbed individuals in branching Brownian motion with a barrier. Available at arXiv:1004.1426. Zbl1281.60070
  35. [35] H. P. McKean. Application of Brownian motion to the equation of Kolmogorov–Petrovskii–Piskunov. Comm. Pure Appl. Math.28 (1975) 323–331. Zbl0316.35053
  36. [36] J. Neveu. Multiplicative martingales for spatial branching processes. In Seminar on Stochastic Processes 1987223–242. E. Çinlar, K. L. Chung and R. K. Getoor (Eds). Progress in Probability and Statistics 15. Birkhäuser, Boston, 1988. Zbl0652.60089
  37. [37] R. G. Pinsky. K-P-P-type asymptotics for nonlinear diffusion in a large ball with infinite boundary data and on 𝐑 d with infinite initial data outside a large ball. Comm. Partial Differential Equations20 (1995) 1369–1393. Zbl0831.35078
  38. [38] Y.-X. Ren and H. Wang. On states of total weighted occupation times of a class of infinitely divisible superprocesses on a bounded domain. Potential Anal.28 (2008) 105–137. Zbl1205.60151MR2373101
  39. [39] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion. Grundlehren der Mathematischen Wissenschaften 293. Springer, Berlin, 1980. Zbl0731.60002
  40. [40] Y. C. Sheu. Lifetime and compactness of range for ψ -super-Brownian motion with a general branching mechanism. Stochastics Process. Appl.70 (1997) 129–141. Zbl0911.60060MR1472962
  41. [41] K. Uchiyama. The behavior of solutions of some non-linear diffusion equations for large time. J. Math. Kyoto Univ.18 (1978) 453–508. Zbl0408.35053MR509494
  42. [42] A. I. Volpert, V. A. Volpert and V. A. Volpert. Traveling Wave Solutions of Parabolic Systems. Translations of Mathematical Monographs 140. Amer. Math. Soc., 1994. Zbl1001.35060MR1297766
  43. [43] S. Watanabe. A limit theorem of branching processes and continuous-state branching processes. J. Math. Kyoto Univ.8 (1968) 141–167. Zbl0159.46201MR237008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.