Entropy of Schur–Weyl measures
Annales de l'I.H.P. Probabilités et statistiques (2014)
- Volume: 50, Issue: 2, page 678-713
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topMkrtchyan, Sevak. "Entropy of Schur–Weyl measures." Annales de l'I.H.P. Probabilités et statistiques 50.2 (2014): 678-713. <http://eudml.org/doc/271950>.
@article{Mkrtchyan2014,
abstract = {Relative dimensions of isotypic components of $N$th order tensor representations of the symmetric group on $n$ letters give a Plancherel-type measure on the space of Young diagrams with $n$ cells and at most $N$ rows. It was conjectured by G. Olshanski that dimensions of isotypic components of tensor representations of finite symmetric groups, after appropriate normalization, converge to a constant with respect to this family of Plancherel-type measures in the limit when $\frac\{N\}\{\sqrt\{n\}\}$ converges to a constant. The main result of the paper is the proof of this conjecture.},
author = {Mkrtchyan, Sevak},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {asymptotic representation theory; Schur-Weyl duality; Plancherel measure; Schur-Weyl measure; Vershik-Kerov conjecture},
language = {eng},
number = {2},
pages = {678-713},
publisher = {Gauthier-Villars},
title = {Entropy of Schur–Weyl measures},
url = {http://eudml.org/doc/271950},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Mkrtchyan, Sevak
TI - Entropy of Schur–Weyl measures
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 2
SP - 678
EP - 713
AB - Relative dimensions of isotypic components of $N$th order tensor representations of the symmetric group on $n$ letters give a Plancherel-type measure on the space of Young diagrams with $n$ cells and at most $N$ rows. It was conjectured by G. Olshanski that dimensions of isotypic components of tensor representations of finite symmetric groups, after appropriate normalization, converge to a constant with respect to this family of Plancherel-type measures in the limit when $\frac{N}{\sqrt{n}}$ converges to a constant. The main result of the paper is the proof of this conjecture.
LA - eng
KW - asymptotic representation theory; Schur-Weyl duality; Plancherel measure; Schur-Weyl measure; Vershik-Kerov conjecture
UR - http://eudml.org/doc/271950
ER -
References
top- [1] P. Biane. Approximate factorization and concentration for characters of symmetric groups. Int. Math. Res. Not.4 (2001) 179–192. Zbl1106.20304MR1813797
- [2] A. Borodin and J. Kuan. Asymptotics of Plancherel measures for the infinite-dimensional unitary group. Adv. Math.219 (2008) 894–931. Zbl1153.60058MR2442056
- [3] A. Borodin, A. Okounkov and G. Olshanski. Asymptotics of Plancherel measures for symmetric groups. J. Amer. Math. Soc.13 (2000) 481–515. Zbl0938.05061MR1758751
- [4] A. Borodin and G. Olshanski. Asymptotics of Plancherel-type random partitions. J. Algebra313 (2007) 40–60. Zbl1117.60051MR2326137
- [5] A. Borodin and G. Olshanski. The boundary of the Gelfand–Tsetlin graph: A new approach. Adv. Math.230 (2012) 1738–1779. Zbl1245.05131MR2927353
- [6] A. I. Bufetov. On the Vershik–Kerov conjecture concerning the Shannon–Macmillan–Breiman theorem for the Plancherel family of measures on the space of Young diagrams. Geom. Funct. Anal.22 (2012) 938–979. Zbl1254.05024MR2984121
- [7] W. Fulton and J. Harris. Representation Theory. A First Course. Graduate Texts in Mathematics 129. Springer-Verlag, New York, 1991. Zbl0744.22001MR1153249
- [8] K. Johansson. Discrete orthogonal polynomial ensembles and the Plancherel measure. Ann. Math.153 (2001) 259–296. Zbl0984.15020MR1826414
- [9] B. F. Logan and L. A. Shepp. A variational problem for random Young tableaux. Adv. Math.26 (1977) 206–222. Zbl0363.62068MR1417317
- [10] S. Mkrtchyan. Asymptotics of the maximal and the typical dimensions of isotypic components of tensor representations of the symmetric group. European J. Combin.33 (2012) 1631–1652. Zbl1248.20012MR2923474
- [11] A. Okounkov. Symmetric functions and random partitions. In Symmetric Functions 2001: Surveys of Developments and Perspectives 223–252. NATO Sci. Ser. II Math. Phys. Chem. 74. Kluwer Acad. Publ., Dordrecht, 2002. Zbl1017.05103MR2059364
- [12] A. Okounkov and G. Olshanski. Asymptotics of Jack polynomials as the number of variables goes to infinity. Int. Math. Res. Not.13 (1998) 641–682. Zbl0913.33004MR1636541
- [13] G. Olshanski. Difference operators and determinantal point processes. Funct. Anal. Appl.42 (2008) 317–329. Zbl1157.60319MR2492429
- [14] G. Olshanski. Asymptotic representation theory: Lectures at Independent University of Moscow II, Lecture Notes, 2009, available at http://www.iitp.ru/en/userpages/88/.
- [15] A. Soshnikov. Determinantal random point fields. Uspekhi Mat. Nauk 55 (2000) 107–160. English translation: Russian Math. Surveys 55 (2000) 923–975. Zbl0991.60038MR1799012
- [16] A. M. Vershik and S. V. Kerov. Asymptotics of the Plancherel measure of the symmetric group. Soviet Math. Dokl.18 (1977) 527–531. Zbl0406.05008
- [17] A. M. Vershik and S. V. Kerov. Characters and factor representations of the infinite unitary group. Soviet Math. Dokl.26 (1982) 570–574. Zbl0524.22017MR681202
- [18] A. M. Vershik and S. V. Kerov. Asymptotic behavior of the maximum and generic dimensions of irreducible representations of the symmetric group. Funktsional. Anal. i Prilozhen.19 (1985) 25–36. Zbl0592.20015MR783703
- [19] A. M. Vershik and D. Pavlov. Some numerical and algorithmical problems in the asymptotic representation theory. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 373 (2009) 77–93, 346–347. Zbl1288.20012
- [20] D. Voiculescu. Représentations factorielles de type II1 de U(infty). J. Math. Pures Appl.55 (1976) 1–20. Zbl0352.22014MR442153
- [21] H. Weyl. The Classical Groups: Their Invariants and Representations. Princeton Univ. Press, Princeton, NJ, 1939. Zbl1024.20502MR1488158
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.