The spread of a catalytic branching random walk
Annales de l'I.H.P. Probabilités et statistiques (2014)
- Volume: 50, Issue: 2, page 327-351
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topCarmona, Philippe, and Hu, Yueyun. "The spread of a catalytic branching random walk." Annales de l'I.H.P. Probabilités et statistiques 50.2 (2014): 327-351. <http://eudml.org/doc/271969>.
@article{Carmona2014,
abstract = {We consider a catalytic branching random walk on $\mathbb \{Z\} $ that branches at the origin only. In the supercritical regime we establish a law of large number for the maximal position $M_\{n\}$: For some constant $\alpha $, $\frac\{M_\{n\}\}\{n\}\rightarrow \alpha $ almost surely on the set of infinite number of visits of the origin. Then we determine all possible limiting laws for $M_\{n\}-\alpha n$ as $n$ goes to infinity.},
author = {Carmona, Philippe, Hu, Yueyun},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {branching processes; catalytic branching random walk; branching process},
language = {eng},
number = {2},
pages = {327-351},
publisher = {Gauthier-Villars},
title = {The spread of a catalytic branching random walk},
url = {http://eudml.org/doc/271969},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Carmona, Philippe
AU - Hu, Yueyun
TI - The spread of a catalytic branching random walk
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 2
SP - 327
EP - 351
AB - We consider a catalytic branching random walk on $\mathbb {Z} $ that branches at the origin only. In the supercritical regime we establish a law of large number for the maximal position $M_{n}$: For some constant $\alpha $, $\frac{M_{n}}{n}\rightarrow \alpha $ almost surely on the set of infinite number of visits of the origin. Then we determine all possible limiting laws for $M_{n}-\alpha n$ as $n$ goes to infinity.
LA - eng
KW - branching processes; catalytic branching random walk; branching process
UR - http://eudml.org/doc/271969
ER -
References
top- [1] E. Aïdékon. Convergence in law of the minimum of a branching random walk. Preprint. Ann. Probab. To appear. Available at http://arxiv.org/abs/1101.1810. Zbl1285.60086MR3098680
- [2] E. Aïdékon and Z. Shi. Weak convergence for the minimal position in a branching random walk: A simple proof. Period. Math. Hungar. 61(1–2) (2010) 43–54. Zbl1240.60227MR2728431
- [3] S. Albeverio and L. V. Bogachev. Branching random walk in a catalytic medium. I. Basic equations. Positivity 4(1) (2000) 41–100. Zbl0953.60079MR1740207
- [4] S. Albeverio, L. V. Bogachev and E. B. Yarovaya. Asymptotics of branching symmetric random walk on the lattice with a single source. C. R. Acad. Sci. Paris Sér. I Math. 326(8) (1998) 975–980. Zbl0917.60080MR1649878
- [5] S. Albeverio, L. V. Bogachev and E. B. Yarovaya. Erratum: “Asymptotics of branching symmetric random walk on the lattice with a single source”. C. R. Acad. Sci. Paris Sér. I Math. 327(6) (1998) 585. Zbl0917.60080MR1650599
- [6] K. B. Athreya and P. E. Ney. Branching Processes. Dover, Mineola, NY, 2004. Reprint of the 1972 original [Springer, New York; MR0373040]. Zbl1070.60001MR373040
- [7] J. Berestycki, É. Brunet, J. W. Harris and S. C. Harris. The almost-sure population growth rate in branching Brownian motion with a quadratic breeding potential. Statist. Probab. Lett. 80(17–18) (2010) 1442–1446. Zbl1196.60144MR2669786
- [8] J. D. Biggins. Martingale convergence in the branching random walk. J. Appl. Probab.14 (1977) 25–37. Zbl0356.60053MR433619
- [9] J. D. Biggins and A. E. Kyprianou. Measure change in multitype branching. Adv. in Appl. Probab. 36(2) (2004) 544–581. Zbl1056.60082MR2058149
- [10] L. V. Bogachev and E. B. Yarovaya. Moment analysis of a branching random walk on a lattice with a single source. Dokl. Akad. Nauk 363(4) (1998) 439–442. Zbl0963.60083MR1702745
- [11] M. Bramson. Minimal displacement of branching random walk. Z. Wahrsch. Verw. Gebiete45 (1978) 89–108. Zbl0373.60089MR510529
- [12] Ph. Carmona. A large deviation theory via the renewal theorem. Note, 2005. Available at http://www.math.sciences.univ-nantes.fr/~carmona/renewaldp.pdf.
- [13] K. S. Crump. On systems of renewal equations. J. Math. Anal. Appl.30 (1970) 425–434. Zbl0198.22502MR257678
- [14] B. de Saporta. Renewal theorem for a system of renewal equations. Ann. Inst. Henri Poincaré Probab. Stat.39 (2003) 823–838. Zbl1021.60069MR1997214
- [15] A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications. Stoch. Model. Appl. Probab. 38. Springer, Berlin, 2010. Corrected reprint of the second (1998) edition. Zbl1177.60035MR2571413
- [16] L. Döring and M. Roberts. Catalytic branching processes via spine techniques and renewal theory. Preprint, 2011. Available at http://arxiv.org/abs/1106.5428. Zbl06234279
- [17] L. Döring and M. Savov. An application of renewal theorems to exponential moments of local times. Electron. Commun. Probab.15 (2010), 263–269. Zbl1226.60103MR2658973
- [18] W. Feller. An Introduction to Probability Theory and Its Applications, Vol. I. Wiley, New York, 1950. Zbl0039.13201MR38583
- [19] W. Feller. An Introduction to Probability Theory and Its Applications, Vol. II. Wiley, New York, 1966. Zbl0219.60003MR210154
- [20] R. Hardy and S. C. Harris. A spine approach to branching diffusions with applications to -convergence of martingales. In Séminaire de Probabilités XLII 281–330, 2009. Zbl1193.60100MR2599214
- [21] J. W. Harris and S. C. Harris. Branching Brownian motion with an inhomogeneous breeding potential. Ann. Inst. Henri Poincaré Probab. Stat. 45(3) (2009) 793–801. Zbl1183.60029MR2548504
- [22] S. C. Harris and M. I. Roberts. The many-to-few lemma and multiple spines. Preprint, 2011. Available at http://arxiv.org/abs/1106.4761.
- [23] Y. Hu and Z. Shi. Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees. Ann. Probab. 37(2) (2009) 742–789. Zbl1169.60021MR2510023
- [24] R. Lyons, R. Pemantle and Y. Peres. Conceptual proofs of criteria for mean behavior of branching processes. Ann. Probab. 23(3) (1995) 1125–1138. Zbl0840.60077MR1349164
- [25] P. Révész. Random Walks of Infinitely Many Particles. World Scientific, River Edge, NJ, 1994. Zbl0841.60053MR1645302
- [26] Z. Shi. Branching random walks. Saint-Flour summer’s course, 2012.
- [27] V. Topchii and V. Vatutin. Individuals at the origin in the critical catalytic branching random walk. In Discrete Random Walks (Paris, 2003) 325–332 (electronic). Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2003. Zbl1034.60078MR2042398
- [28] V. Topchii and V. Vatutin. Two-dimensional limit theorem for a critical catalytic branching random walk. In Mathematics and Computer Science III 387–395. Birkhäuser, Basel, 2004. Zbl1062.60091MR2090528
- [29] V. A. Vatutin and V. A. Topchiĭ. A limit theorem for critical catalytic branching random walks. Teor. Veroyatn. Primen. 49(3) (2004), 461–484. Zbl1093.60062MR2144864
- [30] V. A. Vatutin, V. A. Topchiĭ and E. B. Yarovaya. Catalytic branching random walks and queueing systems with a random number of independently operating servers. Teor. Ĭmovīr. Mat. Stat. 69 (2003) 1–15. Zbl1097.60068MR2110900
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.