The spread of a catalytic branching random walk

Philippe Carmona; Yueyun Hu

Annales de l'I.H.P. Probabilités et statistiques (2014)

  • Volume: 50, Issue: 2, page 327-351
  • ISSN: 0246-0203

Abstract

top
We consider a catalytic branching random walk on that branches at the origin only. In the supercritical regime we establish a law of large number for the maximal position M n : For some constant α , M n n α almost surely on the set of infinite number of visits of the origin. Then we determine all possible limiting laws for M n - α n as n goes to infinity.

How to cite

top

Carmona, Philippe, and Hu, Yueyun. "The spread of a catalytic branching random walk." Annales de l'I.H.P. Probabilités et statistiques 50.2 (2014): 327-351. <http://eudml.org/doc/271969>.

@article{Carmona2014,
abstract = {We consider a catalytic branching random walk on $\mathbb \{Z\} $ that branches at the origin only. In the supercritical regime we establish a law of large number for the maximal position $M_\{n\}$: For some constant $\alpha $, $\frac\{M_\{n\}\}\{n\}\rightarrow \alpha $ almost surely on the set of infinite number of visits of the origin. Then we determine all possible limiting laws for $M_\{n\}-\alpha n$ as $n$ goes to infinity.},
author = {Carmona, Philippe, Hu, Yueyun},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {branching processes; catalytic branching random walk; branching process},
language = {eng},
number = {2},
pages = {327-351},
publisher = {Gauthier-Villars},
title = {The spread of a catalytic branching random walk},
url = {http://eudml.org/doc/271969},
volume = {50},
year = {2014},
}

TY - JOUR
AU - Carmona, Philippe
AU - Hu, Yueyun
TI - The spread of a catalytic branching random walk
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 2
SP - 327
EP - 351
AB - We consider a catalytic branching random walk on $\mathbb {Z} $ that branches at the origin only. In the supercritical regime we establish a law of large number for the maximal position $M_{n}$: For some constant $\alpha $, $\frac{M_{n}}{n}\rightarrow \alpha $ almost surely on the set of infinite number of visits of the origin. Then we determine all possible limiting laws for $M_{n}-\alpha n$ as $n$ goes to infinity.
LA - eng
KW - branching processes; catalytic branching random walk; branching process
UR - http://eudml.org/doc/271969
ER -

References

top
  1. [1] E. Aïdékon. Convergence in law of the minimum of a branching random walk. Preprint. Ann. Probab. To appear. Available at http://arxiv.org/abs/1101.1810. Zbl1285.60086MR3098680
  2. [2] E. Aïdékon and Z. Shi. Weak convergence for the minimal position in a branching random walk: A simple proof. Period. Math. Hungar. 61(1–2) (2010) 43–54. Zbl1240.60227MR2728431
  3. [3] S. Albeverio and L. V. Bogachev. Branching random walk in a catalytic medium. I. Basic equations. Positivity 4(1) (2000) 41–100. Zbl0953.60079MR1740207
  4. [4] S. Albeverio, L. V. Bogachev and E. B. Yarovaya. Asymptotics of branching symmetric random walk on the lattice with a single source. C. R. Acad. Sci. Paris Sér. I Math. 326(8) (1998) 975–980. Zbl0917.60080MR1649878
  5. [5] S. Albeverio, L. V. Bogachev and E. B. Yarovaya. Erratum: “Asymptotics of branching symmetric random walk on the lattice with a single source”. C. R. Acad. Sci. Paris Sér. I Math. 327(6) (1998) 585. Zbl0917.60080MR1650599
  6. [6] K. B. Athreya and P. E. Ney. Branching Processes. Dover, Mineola, NY, 2004. Reprint of the 1972 original [Springer, New York; MR0373040]. Zbl1070.60001MR373040
  7. [7] J. Berestycki, É. Brunet, J. W. Harris and S. C. Harris. The almost-sure population growth rate in branching Brownian motion with a quadratic breeding potential. Statist. Probab. Lett. 80(17–18) (2010) 1442–1446. Zbl1196.60144MR2669786
  8. [8] J. D. Biggins. Martingale convergence in the branching random walk. J. Appl. Probab.14 (1977) 25–37. Zbl0356.60053MR433619
  9. [9] J. D. Biggins and A. E. Kyprianou. Measure change in multitype branching. Adv. in Appl. Probab. 36(2) (2004) 544–581. Zbl1056.60082MR2058149
  10. [10] L. V. Bogachev and E. B. Yarovaya. Moment analysis of a branching random walk on a lattice with a single source. Dokl. Akad. Nauk 363(4) (1998) 439–442. Zbl0963.60083MR1702745
  11. [11] M. Bramson. Minimal displacement of branching random walk. Z. Wahrsch. Verw. Gebiete45 (1978) 89–108. Zbl0373.60089MR510529
  12. [12] Ph. Carmona. A large deviation theory via the renewal theorem. Note, 2005. Available at http://www.math.sciences.univ-nantes.fr/~carmona/renewaldp.pdf. 
  13. [13] K. S. Crump. On systems of renewal equations. J. Math. Anal. Appl.30 (1970) 425–434. Zbl0198.22502MR257678
  14. [14] B. de Saporta. Renewal theorem for a system of renewal equations. Ann. Inst. Henri Poincaré Probab. Stat.39 (2003) 823–838. Zbl1021.60069MR1997214
  15. [15] A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications. Stoch. Model. Appl. Probab. 38. Springer, Berlin, 2010. Corrected reprint of the second (1998) edition. Zbl1177.60035MR2571413
  16. [16] L. Döring and M. Roberts. Catalytic branching processes via spine techniques and renewal theory. Preprint, 2011. Available at http://arxiv.org/abs/1106.5428. Zbl06234279
  17. [17] L. Döring and M. Savov. An application of renewal theorems to exponential moments of local times. Electron. Commun. Probab.15 (2010), 263–269. Zbl1226.60103MR2658973
  18. [18] W. Feller. An Introduction to Probability Theory and Its Applications, Vol. I. Wiley, New York, 1950. Zbl0039.13201MR38583
  19. [19] W. Feller. An Introduction to Probability Theory and Its Applications, Vol. II. Wiley, New York, 1966. Zbl0219.60003MR210154
  20. [20] R. Hardy and S. C. Harris. A spine approach to branching diffusions with applications to p -convergence of martingales. In Séminaire de Probabilités XLII 281–330, 2009. Zbl1193.60100MR2599214
  21. [21] J. W. Harris and S. C. Harris. Branching Brownian motion with an inhomogeneous breeding potential. Ann. Inst. Henri Poincaré Probab. Stat. 45(3) (2009) 793–801. Zbl1183.60029MR2548504
  22. [22] S. C. Harris and M. I. Roberts. The many-to-few lemma and multiple spines. Preprint, 2011. Available at http://arxiv.org/abs/1106.4761. 
  23. [23] Y. Hu and Z. Shi. Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees. Ann. Probab. 37(2) (2009) 742–789. Zbl1169.60021MR2510023
  24. [24] R. Lyons, R. Pemantle and Y. Peres. Conceptual proofs of L log L criteria for mean behavior of branching processes. Ann. Probab. 23(3) (1995) 1125–1138. Zbl0840.60077MR1349164
  25. [25] P. Révész. Random Walks of Infinitely Many Particles. World Scientific, River Edge, NJ, 1994. Zbl0841.60053MR1645302
  26. [26] Z. Shi. Branching random walks. Saint-Flour summer’s course, 2012. 
  27. [27] V. Topchii and V. Vatutin. Individuals at the origin in the critical catalytic branching random walk. In Discrete Random Walks (Paris, 2003) 325–332 (electronic). Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2003. Zbl1034.60078MR2042398
  28. [28] V. Topchii and V. Vatutin. Two-dimensional limit theorem for a critical catalytic branching random walk. In Mathematics and Computer Science III 387–395. Birkhäuser, Basel, 2004. Zbl1062.60091MR2090528
  29. [29] V. A. Vatutin and V. A. Topchiĭ. A limit theorem for critical catalytic branching random walks. Teor. Veroyatn. Primen. 49(3) (2004), 461–484. Zbl1093.60062MR2144864
  30. [30] V. A. Vatutin, V. A. Topchiĭ and E. B. Yarovaya. Catalytic branching random walks and queueing systems with a random number of independently operating servers. Teor. Ĭmovīr. Mat. Stat. 69 (2003) 1–15. Zbl1097.60068MR2110900

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.