The number of absorbed individuals in branching brownian motion with a barrier
Annales de l'I.H.P. Probabilités et statistiques (2013)
- Volume: 49, Issue: 2, page 428-455
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topMaillard, Pascal. "The number of absorbed individuals in branching brownian motion with a barrier." Annales de l'I.H.P. Probabilités et statistiques 49.2 (2013): 428-455. <http://eudml.org/doc/271972>.
@article{Maillard2013,
abstract = {We study supercritical branching Brownian motion on the real line starting at the origin and with constant drift $c$. At the point $x>0$, we add an absorbing barrier, i.e. individuals touching the barrier are instantly killed without producing offspring. It is known that there is a critical drift $c_\{0\}$, such that this process becomes extinct almost surely if and only if $c\ge c_\{0\}$. In this case, if $Z_\{x\}$ denotes the number of individuals absorbed at the barrier, we give an asymptotic for $P(Z_\{x\}=n)$ as $n$ goes to infinity. If $c=c_\{0\}$ and the reproduction is deterministic, this improves upon results of L. Addario-Berry and N. Broutin [1] and E. Aïdékon [2] on a conjecture by David Aldous about the total progeny of a branching random walk. The main technique used in the proofs is analysis of the generating function of $Z_\{x\}$ near its singular point $1$, based on classical results on some complex differential equations.},
author = {Maillard, Pascal},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {branching brownian motion; Galton–Watson process; Briot–Bouquet equation; FKPP equation; travelling wave; singularity analysis of generating functions; branching Brownian motion; Galton-Watson process; Briot-Bouquet equation},
language = {eng},
number = {2},
pages = {428-455},
publisher = {Gauthier-Villars},
title = {The number of absorbed individuals in branching brownian motion with a barrier},
url = {http://eudml.org/doc/271972},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Maillard, Pascal
TI - The number of absorbed individuals in branching brownian motion with a barrier
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 2
SP - 428
EP - 455
AB - We study supercritical branching Brownian motion on the real line starting at the origin and with constant drift $c$. At the point $x>0$, we add an absorbing barrier, i.e. individuals touching the barrier are instantly killed without producing offspring. It is known that there is a critical drift $c_{0}$, such that this process becomes extinct almost surely if and only if $c\ge c_{0}$. In this case, if $Z_{x}$ denotes the number of individuals absorbed at the barrier, we give an asymptotic for $P(Z_{x}=n)$ as $n$ goes to infinity. If $c=c_{0}$ and the reproduction is deterministic, this improves upon results of L. Addario-Berry and N. Broutin [1] and E. Aïdékon [2] on a conjecture by David Aldous about the total progeny of a branching random walk. The main technique used in the proofs is analysis of the generating function of $Z_{x}$ near its singular point $1$, based on classical results on some complex differential equations.
LA - eng
KW - branching brownian motion; Galton–Watson process; Briot–Bouquet equation; FKPP equation; travelling wave; singularity analysis of generating functions; branching Brownian motion; Galton-Watson process; Briot-Bouquet equation
UR - http://eudml.org/doc/271972
ER -
References
top- [1] L. Addario-Berry and N. Broutin. Total progeny in killed branching random walk. Probab. Theory Relat. Fields.151 (2011) 265–295. Zbl1230.60091MR2834719
- [2] E. Aïdékon. Tail asymptotics for the total progeny of the critical killed branching random walk. Electron. Commun. Probab.15 (2010) 522–533. Zbl1226.60117MR2737710
- [3] D. Aldous. Power laws and killed branching random walk. Available at http://www.stat.berkeley.edu/~aldous/Research/OP/brw.html.
- [4] K. B. Athreya and P. E. Ney. Branching Processes. Grundlehren Math. Wiss. 196. Springer, New York, 1972. Zbl0259.60002MR373040
- [5] L. Bieberbach. Theorie der gewöhnlichen Differentialgleichungen auf funktionentheoretischer Grundlage dargestellt, Zweite umgearbeitete und erweiterte Auflage. Grundlehren Math. Wiss. 66. Springer, Berlin, 1965. Zbl0124.04603MR176133
- [6] J. Biggins and A. Kyprianou. Measure change in multitype branching. Adv. in Appl. Probab.36 (2004) 544–581. Zbl1056.60082MR2058149
- [7] N. H. Bingham, and R. A. Doney. Asymptotic properties of supercritical branching processes. I. The Galton–Watson process. Adv. in Appl. Probab. 6 (1974) 711–731. Zbl0297.60044MR362525
- [8] A. N. Borodin and P. Salminen. Handbook of Brownian Motion—Facts and Formulae, 2nd edition. Probability and Its Applications. Birkhäuser, Basel, 2002. Zbl0859.60001MR1912205
- [9] C. Briot and J.-C. Bouquet. Recherches sur les propriétés des fonctions définies par des équations différentielles. J. Ecole Polyt. 36 (1856) 133–198. JFM10.0223.01
- [10] B. Chauvin. Product martingales and stopping lines for branching Brownian motion. Ann. Probab.19 (1991) 1195–1205. Zbl0738.60079MR1112412
- [11] W. Feller. An Introduction to Probability Theory and Its Applications, Vol. 2, 2nd edition. Wiley Series in Probability and Mathematical Statistics. Wiley, New York, 1971. Zbl0219.60003MR270403
- [12] P. Flajolet and A. Odlyzko. Singularity analysis of generating functions. SIAM J. Discrete Math.3 (1990) 216–240. Zbl0712.05004MR1039294
- [13] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge Univ. Press, Cambridge, 2009. Zbl1165.05001MR2483235
- [14] T. E. Harris. The Theory of Branching Processes. Grundlehren Math. Wiss. 119. Springer, Berlin, 1963. Zbl0117.13002MR163361
- [15] E. Hille. Ordinary Differential Equations in the Complex Domain. Pure and Applied Mathematics. Wiley-Interscience, New York, 1976. Zbl0343.34007MR499382
- [16] L. Hörmander. An Introduction to Complex Analysis in Several Variables, revised edition. North-Holland Mathematical Library 7. North-Holland, Amsterdam, 1973. Zbl0271.32001
- [17] M. Hukuhara, T. Kimura and T. Matuda. Equations différentielles ordinaires du premier ordre dans le champ complexe. Publications of the Mathematical Society of Japan 7. The Mathematical Society of Japan, Tokyo, 1961. Zbl0101.30002MR124549
- [18] E. L. Ince. Ordinary Differential Equations. Dover, New York, 1944. Zbl0063.02971MR10757JFM53.0399.07
- [19] H. Kesten. Branching Brownian motion with absorption. Stochastic Process. Appl.7 (1978) 9–47. Zbl0383.60077MR494543
- [20] A. E. Kyprianou. Travelling wave solutions to the K-P-P equation: Alternatives to Simon Harris’ probabilistic analysis. Ann. Inst. Henri Poincaré Probab. Stat.40 (2004) 53–72. Zbl1042.60057MR2037473
- [21] R. Lyons, R. Pemantle and Y. Peres. Conceptual proofs of criteria for mean behavior of branching processes. Ann. Probab.23 (1995) 1125–1138. Zbl0840.60077MR1349164
- [22] H. P. McKean. Application of Brownian motion to the equation of Kolmogorov–Petrovskii–Piskunov. Comm. Pure Appl. Math.28 (1975) 323–331. Zbl0316.35053MR400428
- [23] J. Neveu. Multiplicative martingales for spatial branching processes. In Seminar on Stochastic Processes (Princeton, NJ, 1987) 223–242. Progr. Probab. Statist. 15. Birkhäuser Boston, Boston, MA. Zbl0652.60089MR1046418
- [24] R. Pemantle. Critical killed branching process tail probabilities. Manuscript, 1999.
- [25] T. Yang, and Y.-X. Ren. Limit theorem for derivative martingale at criticality w.r.t. branching Brownian motion. Statist. Probab. Lett. 81 (2011) 195–200. Zbl05850242MR2748182
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.