Limit theorems for one and two-dimensional random walks in random scenery
Fabienne Castell; Nadine Guillotin-Plantard; Françoise Pène
Annales de l'I.H.P. Probabilités et statistiques (2013)
- Volume: 49, Issue: 2, page 506-528
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topCastell, Fabienne, Guillotin-Plantard, Nadine, and Pène, Françoise. "Limit theorems for one and two-dimensional random walks in random scenery." Annales de l'I.H.P. Probabilités et statistiques 49.2 (2013): 506-528. <http://eudml.org/doc/271976>.
@article{Castell2013,
abstract = {Random walks in random scenery are processes defined by $Z_\{n\}:=\sum _\{k=1\}^\{n\}\xi _\{X_\{1\}+\cdots +X_\{k\}\}$, where $(X_\{k\},k\ge 1)$ and $(\xi _\{y\},y\in \{\mathbb \{Z\}\}^\{d\})$ are two independent sequences of i.i.d. random variables with values in $\{\mathbb \{Z\}\}^\{d\}$ and $\mathbb \{R\}$ respectively. We suppose that the distributions of $X_\{1\}$ and $\xi _\{0\}$ belong to the normal basin of attraction of stable distribution of index $\alpha \in (0,2]$ and $\beta \in (0,2]$. When $d=1$ and $\alpha \ne 1$, a functional limit theorem has been established in (Z. Wahrsch. Verw. Gebiete50 (1979) 5–25) and a local limit theorem in (Ann. Probab.To appear). In this paper, we establish the convergence in distribution and a local limit theorem when $\alpha =d$ (i.e. $\alpha =d=1$ or $\alpha =d=2$) and $\beta \in (0,2]$. Let us mention that functional limit theorems have been established in (Ann. Probab.17(1989) 108–115) and recently in (An asymptotic variance of the self-intersections of random walks. Preprint) in the particular case when $\beta =2$ (respectively for $\alpha =d=2$ and $\alpha =d=1$).},
author = {Castell, Fabienne, Guillotin-Plantard, Nadine, Pène, Françoise},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random walk in random scenery; local limit theorem; local time; stable process},
language = {eng},
number = {2},
pages = {506-528},
publisher = {Gauthier-Villars},
title = {Limit theorems for one and two-dimensional random walks in random scenery},
url = {http://eudml.org/doc/271976},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Castell, Fabienne
AU - Guillotin-Plantard, Nadine
AU - Pène, Françoise
TI - Limit theorems for one and two-dimensional random walks in random scenery
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 2
SP - 506
EP - 528
AB - Random walks in random scenery are processes defined by $Z_{n}:=\sum _{k=1}^{n}\xi _{X_{1}+\cdots +X_{k}}$, where $(X_{k},k\ge 1)$ and $(\xi _{y},y\in {\mathbb {Z}}^{d})$ are two independent sequences of i.i.d. random variables with values in ${\mathbb {Z}}^{d}$ and $\mathbb {R}$ respectively. We suppose that the distributions of $X_{1}$ and $\xi _{0}$ belong to the normal basin of attraction of stable distribution of index $\alpha \in (0,2]$ and $\beta \in (0,2]$. When $d=1$ and $\alpha \ne 1$, a functional limit theorem has been established in (Z. Wahrsch. Verw. Gebiete50 (1979) 5–25) and a local limit theorem in (Ann. Probab.To appear). In this paper, we establish the convergence in distribution and a local limit theorem when $\alpha =d$ (i.e. $\alpha =d=1$ or $\alpha =d=2$) and $\beta \in (0,2]$. Let us mention that functional limit theorems have been established in (Ann. Probab.17(1989) 108–115) and recently in (An asymptotic variance of the self-intersections of random walks. Preprint) in the particular case when $\beta =2$ (respectively for $\alpha =d=2$ and $\alpha =d=1$).
LA - eng
KW - random walk in random scenery; local limit theorem; local time; stable process
UR - http://eudml.org/doc/271976
ER -
References
top- [1] G. Ben Arous and J. Cerný. Scaling limit for trap models on . Ann. Probab.35 (2007) 2356–2384. Zbl1134.60064MR2353391
- [2] P. Billingsley. Convergence of Probability Measures. Wiley Series in Probability and Mathematical Statistics. Wiley, New York, 1968. Zbl0944.60003MR233396
- [3] E. Bolthausen. A central limit theorem for two-dimensional random walks in random sceneries. Ann. Probab.17 (1989) 108–115. Zbl0679.60028MR972774
- [4] A. N. Borodin. A limit theorem for sums of independent random variables defined on a recurrent random walk. Dokl. Akad. Nauk SSSR 246 (1979) 786–787 (in Russian). Zbl0423.60025MR543530
- [5] A. N. Borodin. Limit theorems for sums of independent random variables defined on a transient random walk. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 85 (1979) 17–29, 237, 244. Zbl0417.60027MR535455
- [6] L. Breiman. Probability. Addison-Wesley, Reading, 1968. Zbl0174.48801MR229267
- [7] F. Castell, N. Guillotin-Plantard, F. Pène and Br. Schapira. A local limit theorem for random walks in random scenery and on randomly oriented lattices. Ann. Probab. 39 (2011) 2079–2118. Zbl1238.60028MR2932665
- [8] J. Cerný. Moments and distribution of the local time of a two-dimensional random walk. Stochastic Process. Appl.117 (2007) 262–270. Zbl1107.60043MR2290196
- [9] X. Chen. Moderate and small deviations for the ranges of one-dimensional random walks. J. Theor. Probab.19 (2006) 721–739. Zbl1123.60015MR2280517
- [10] G. Deligiannidis and S. Utev. An asymptotic variance of the self-intersections of random walks. Sib. Math. J.52 (2011) 639–650. Zbl1227.60059MR2883216
- [11] A. Dvoretzky and P. Erdös. Some problems on random walk in space. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950353–367. Univ. California Press, Berkeley, CA, 1950. Zbl0044.14001MR47272
- [12] W. Feller. An Introduction to Probability Theory and Its Applications, Vol. II, 2nd edition. Wiley, New York, 1971. Zbl0138.10207MR270403
- [13] L. R. Fontes and P. Mathieu. On the dynamics of trap models in . Preprint. Available at arXiv:1010.5418. Zbl1307.60141
- [14] H. Hennion and L. Hervé. Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness. Lecture Notes in Mathematics 1766. Springer, Berlin, 2001. Zbl0983.60005MR1862393
- [15] H. Kesten and F. Spitzer. A limit theorem related to a new class of self-similar processes. Z. Wahrsch. Verw. Gebiete50 (1979) 5–25. Zbl0396.60037MR550121
- [16] P. Le Doussal. Diffusion in layered random flows, polymers, electrons in random potentials, and spin depolarization in random fields. J. Statist. Phys.69 (1992) 917–954. Zbl0893.60049MR1192029
- [17] J. F. Le Gall and J. Rosen. The range of stable random walks. Ann. Probab.19 (1991) 650–705. Zbl0729.60066MR1106281
- [18] S. Louhichi. Convergence rates in the strong law for associated random variables. Probab. Math. Statist.20 (2000) 203–214. Zbl0987.60044MR1785247
- [19] S. Louhichi and E. Rio. Convergence du processus de sommes partielles vers un processus de Lévy pour les suites associées. C. R. Acad. Sci. Paris349 (2011) 89–91. Zbl1213.60089MR2755704
- [20] G. Matheron and G. de Marsily. Is transport in porous media always diffusive? A counterxample. Water Resources Res. 16 (1980) 901–917.
- [21] F. Spitzer. Principles of Random Walks. Van Nostrand, Princeton, NJ, 1964. Zbl0175.16702MR171290
- [22] A. V. Skorokhod. Limit theorems for stochastic processes. Theory Probab. Appl.1 (1956) 261–290. Zbl0074.33802
- [23] W. Whitt. Stochastic Process Limits. Springer Series in Operations Research. Springer, New York, 2002. Zbl0993.60001MR1876437
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.