Constructive quantization: approximation by empirical measures
Steffen Dereich; Michael Scheutzow; Reik Schottstedt
Annales de l'I.H.P. Probabilités et statistiques (2013)
- Volume: 49, Issue: 4, page 1183-1203
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topDereich, Steffen, Scheutzow, Michael, and Schottstedt, Reik. "Constructive quantization: approximation by empirical measures." Annales de l'I.H.P. Probabilités et statistiques 49.4 (2013): 1183-1203. <http://eudml.org/doc/271977>.
@article{Dereich2013,
abstract = {In this article, we study the approximation of a probability measure $\mu $ on $\mathbb \{R\}^\{d\}$ by its empirical measure $\hat\{\mu \}_\{N\}$ interpreted as a random quantization. As error criterion we consider an averaged $p$th moment Wasserstein metric. In the case where $2p<d$, we establish fine upper and lower bounds for the error, ahigh resolution formula. Moreover, we provide a universal estimate based on moments, a Pierce type estimate. In particular, we show that quantization by empirical measures is of optimal order under weak assumptions.},
author = {Dereich, Steffen, Scheutzow, Michael, Schottstedt, Reik},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {constructive quantization; Wasserstein metric; transportation problem; Zador’s theorem; Pierce’s lemma; random quantization; Zador's theorem; Pierce's lemma},
language = {eng},
number = {4},
pages = {1183-1203},
publisher = {Gauthier-Villars},
title = {Constructive quantization: approximation by empirical measures},
url = {http://eudml.org/doc/271977},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Dereich, Steffen
AU - Scheutzow, Michael
AU - Schottstedt, Reik
TI - Constructive quantization: approximation by empirical measures
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 4
SP - 1183
EP - 1203
AB - In this article, we study the approximation of a probability measure $\mu $ on $\mathbb {R}^{d}$ by its empirical measure $\hat{\mu }_{N}$ interpreted as a random quantization. As error criterion we consider an averaged $p$th moment Wasserstein metric. In the case where $2p<d$, we establish fine upper and lower bounds for the error, ahigh resolution formula. Moreover, we provide a universal estimate based on moments, a Pierce type estimate. In particular, we show that quantization by empirical measures is of optimal order under weak assumptions.
LA - eng
KW - constructive quantization; Wasserstein metric; transportation problem; Zador’s theorem; Pierce’s lemma; random quantization; Zador's theorem; Pierce's lemma
UR - http://eudml.org/doc/271977
ER -
References
top- [1] M. Ajtai, J. Komlós and G. Tusnàdy. On optimal matchings. Combinatorica 4 (4) (1983) 259–264. Zbl0562.60012MR779885
- [2] F. Barthe and C. Bordenave. Combinatorial optimization over two random point sets. Preprint, 2011. Available at arXiv:1103.2734v2.
- [3] J. Beardwood, J. H. Halton and J. M. Hammersley. The shortest path through many points. Proc. Cambridge Philos. Soc.55 (1959) 299–327. Zbl0118.35601MR109316
- [4] E. Boissard and T. Le Gouic. On the mean speed of convergence of empirical and occupation measures in Wasserstein distance. Preprint, 2011. Available at arXiv:1105.5263v1. Zbl1294.60005
- [5] J. A. Bucklew and G. L. Wise. Multidimensional asymptotic quantization theory with th power distortion measures. IEEE Trans. Inform. Theory28 (1982) 239–247. Zbl0476.94013MR651819
- [6] S. Delattre, S. Graf, H. Luschgy and G. Pagès. Quantization of probability distributions under norm-based distortion measures. Statist. Decisions 22 (4) (2004) 261–282. Zbl1066.60026MR2158264
- [7] S. Dereich. Asymptotic formulae for coding problems and intermediate optimization problems: A review. In Trends in Stochastic Analysis 187–232. Cambridge Univ. Press, Cambridge, 2009. Zbl1172.60010MR2562155
- [8] S. Dereich and C. Vormoor. The high resolution vector quantization problem with Orlicz norm distortion. J. Theoret. Probab. 24 (2) (2011) 517–544. Zbl1219.94070MR2795051
- [9] V. Dobrić and J. E. Yukich. Asymptotics for transportation cost in high dimensions. J. Theoret. Probab. 8 (1) (1995) 97–118. Zbl0811.60022MR1308672
- [10] A. Gersho and R. M. Gray. Vector Quantization and Signal Processing. The Springer International Series in Engineering and Computer Science 1. Springer, New York, 1992. Zbl0782.94001
- [11] S. Graf and H. Luschgy. Foundations of Quantization for Probability Distributions. Lecture Notes in Mathematics 1730. Springer, Berlin, 2000. Zbl0951.60003MR1764176
- [12] J. Horowitz and R. L. Karandikar. Mean rates of convergence of empirical measures in the Wasserstein metric. J. Comput. Appl. Math. 55 (3) (1994) 261–273. Zbl0819.60031MR1329874
- [13] M. Huesmann and T. Sturm. Optimal transport from Lebesgue to Poisson. Preprint, 2010. Available at http://arxiv.org/abs/1012.3845v1. Zbl1279.60024
- [14] L. V. Kantorovich. On the translocation of masses. Dokl. Akad. Nauk 37 (7–8) (1942) 227–229. MR9619
- [15] L. V. Kantorovich and G. Rubinstein. On a space of completely additive functions. Vestnik Leningrad Univ. Math. 13 (7) (1958) 52–59. Zbl0082.11001MR102006
- [16] G. Monge. Mémoire sur la théorie des déblais et des remblais. Mémoires de l’Académie Royale des Sciences XVIII–XIX (1781) 666–704.
- [17] T. Müller-Gronbach, K. Ritter and L. Yaroslavtseva. A derandomization of the Euler scheme for scalar stochastic differential equations. Preprint 80, DFG Priority Program 1324, 2011. Available at http://www.dfg-spp1324.de/publications.php?lang=en. Zbl1247.65007
- [18] G. Pagès. A space quantization method for numerical integration. J. Comput. Appl. Math. 89 (1) (1998) 1–38. Zbl0908.65012MR1625987
- [19] G. Pagès, H. Pham and J. Printems. Optimal quantization methods and applications to numerical problems in finance. In Handbook on Numerical Methods in Finance 253–298. Birkhäuser, Boston, 2004. Zbl1138.91467MR2083055
- [20] G. Pagès and J. Printems. Optimal quadratic quantization for numerics: The Gaussian case. Monte Carlo Methods Appl. 9 (2) (2003) 135–165. Zbl1029.65012MR2006483
- [21] G. Pagès and B. Wilbertz. Sharp rate for the dual quantization problem. Preprint, 2010.
- [22] G. Pagès and B. Wilbertz. Optimal Delaunay and Voronoi quantization schemes for pricing American style options. Preprint, 2011.
- [23] S. T. Rachev and L. Rüschendorf. Mass Transportation Problems. Probability and Its Applications I. Springer, New York, 1998. Zbl0990.60500MR1619171
- [24] S. T. Rachev and L. Rüschendorf. Mass Transportation Problems. Probability and Its Applications II. Springer, New York, 1998. Zbl0990.60500MR1619171
- [25] R. Schottstedt. Constructive quantization by random sampling and numerical applications. Ph.D. thesis, Technical University Berlin, 2012.
- [26] D. W. Stroock and S. R. S. Varadhan. Multidimensional Diffusion Processes. Grundlehren der Mathematischen Wissenschaften 233. Springer, Berlin, 1979. MR532498
- [27] M. Talagrand. The transportation cost from the uniform measure to the empirical measure in dimension . Ann. Probab. 22 (2) (1994) 919–959. Zbl0809.60015MR1288137
- [28] C. Villani. Optimal Transport: Old and New. Grundlehren der Mathematischen Wissenschaften 338. Springer, Berlin, 2009. Zbl1156.53003MR2459454
- [29] L. N. Wasserstein. Markov processes over denumerable products of spaces describing large systems of automata. Probl. Inf. Transm.5 (1969) 47–52. MR314115
- [30] P. L. Zador. Topics in the asymptotic quantization of continuous random variables. Bell Laboratories Technical Memorandum, 1966.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.