Random hysteresis loops

Gioia Carinci

Annales de l'I.H.P. Probabilités et statistiques (2013)

  • Volume: 49, Issue: 2, page 307-339
  • ISSN: 0246-0203

Abstract

top
Dynamical hysteresis is a phenomenon which arises in ferromagnetic systems below the critical temperature as a response to adiabatic variations of the external magnetic field. We study the problem in the context of the mean-field Ising model with Glauber dynamics, proving that for frequencies of the magnetic field oscillations of order N - 2 / 3 , N the size of the system, the “critical” hysteresis loop becomes random.

How to cite

top

Carinci, Gioia. "Random hysteresis loops." Annales de l'I.H.P. Probabilités et statistiques 49.2 (2013): 307-339. <http://eudml.org/doc/271981>.

@article{Carinci2013,
abstract = {Dynamical hysteresis is a phenomenon which arises in ferromagnetic systems below the critical temperature as a response to adiabatic variations of the external magnetic field. We study the problem in the context of the mean-field Ising model with Glauber dynamics, proving that for frequencies of the magnetic field oscillations of order $N^\{-2/3\}$, $N$ the size of the system, the “critical” hysteresis loop becomes random.},
author = {Carinci, Gioia},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {hysteresis; Ising; mean field Glauber dynamics; macroscopic fluctuations; ferromagnetic Ising model; mean-field Glauber dynamics; Langevin-type equation; critical behavior; martingales; stopping times; tightness; limiting probability laws},
language = {eng},
number = {2},
pages = {307-339},
publisher = {Gauthier-Villars},
title = {Random hysteresis loops},
url = {http://eudml.org/doc/271981},
volume = {49},
year = {2013},
}

TY - JOUR
AU - Carinci, Gioia
TI - Random hysteresis loops
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 2
SP - 307
EP - 339
AB - Dynamical hysteresis is a phenomenon which arises in ferromagnetic systems below the critical temperature as a response to adiabatic variations of the external magnetic field. We study the problem in the context of the mean-field Ising model with Glauber dynamics, proving that for frequencies of the magnetic field oscillations of order $N^{-2/3}$, $N$ the size of the system, the “critical” hysteresis loop becomes random.
LA - eng
KW - hysteresis; Ising; mean field Glauber dynamics; macroscopic fluctuations; ferromagnetic Ising model; mean-field Glauber dynamics; Langevin-type equation; critical behavior; martingales; stopping times; tightness; limiting probability laws
UR - http://eudml.org/doc/271981
ER -

References

top
  1. [1] M. Acharyya and B. K. Chakrabarti. Response of Ising systems to oscillating and pulsed fields: Hysteresis, ac, and pulse susceptibility. Phys. Rev. B52 (1995) 6550–6568. 
  2. [2] N. Berglund and B. Gentz. Pathwise description of dynamic pitchfork bifurcations with additive noise. Probab. Theory Related Fields122 (2002) 341–388. Zbl1008.37031MR1892851
  3. [3] N. Berglund and B. Gentz. A sample-paths approach to noise-induced synchronization: Stochastic resonance in a double-well potential. Ann. Appl. Probab.12 (2002) 1419–1470. Zbl1023.60052MR1936599
  4. [4] N. Berglund and B. Gentz. The effect of additive noise on dynamical hysteresis. Nonlinearity15 (2002) 605–632. Zbl1073.37061MR1901095
  5. [5] G. Bertotti. Hysteresis in Magnetism. Academic Press, Boston, 1998. 
  6. [6] G. Bertotti and I. D. Mayergoyz. The Science of Hysteresis, Mathematical Modeling and Applications, Vol. I. Elsevier, Amsterdam, 2006. Zbl1117.34045MR2307929
  7. [7] P. Billingsley. Convergence of Probability Measures. Wiley, New York, 1999. Zbl0172.21201MR1700749
  8. [8] G. Carinci. Stochastic effects in critical regimes. Ph.D. thesis, Università degli Studi dell’Aquila, 2010. 
  9. [9] P. Jung, G. Gray, R. Roy and P. Mandel. Scaling law for dynamical hysteresis. Phys. Rev. Lett.65 (1990) 1873–1876. 
  10. [10] G. Korniss, M. A. Novotny, P. A. Rikvold and C. J. White. Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kinetic Ising model in an oscillating field. Phys. Rev. E 63 (2000) 016120. 
  11. [11] G. Korniss, M. A. Novotny and P. A. Rikvold. Absence of first-order transition and tricritical point in the dynamic phase diagram of a spatially extended bistable system in an oscillating field. Phys. Rev. E 66 (2002) 056127. MR1948573
  12. [12] H. Landau and L. A. Shepp. On the supremum of a Gaussian process. Sankhya A32 (1970) 369–378. Zbl0218.60039MR286167
  13. [13] W. V. Li. Small deviations for Gaussian Markov processes under the sup-norm. J. Theoret. Probab.12 (1999) 971–984. Zbl0961.60051MR1729464
  14. [14] M. B. Marcus and L. A. Shepp. Sample behaviour of Gaussian processes. In Proceedings of the 6th Berkeley Symposium on Mathematics, Statistic and Probability, Vol. 2 423–441. Univ. California Press, Berkeley, CA, 1972. Zbl0379.60040MR402896
  15. [15] M. A. Novotny, P. A. Rikvold and S. W. Sides. Stochastic hysteresis and resonance in a kinetic Ising system. Phys. Rev. E57 (1998) 6512–6533. 
  16. [16] M. A. Novotny, P. A. Rikvold and S. W. Sides. Kinetic Ising model in an oscillating field: Finite-size scaling at the dynamic phase transition. Phys. Rev. Lett.81 (1998) 834–837. 
  17. [17] M. A. Novotny, P. A. Rikvold and S. W. Sides. Kinetic Ising model in an oscillating field: Avrami theory for the hysteretic response and finite-size scaling for the dynamic phase transition. Phys. Rev. E59 (1999) 2710–2729. 
  18. [18] D. Pollard. Convergence of Stochastic Processes. Springer, New York, 1984. Zbl0544.60045MR762984
  19. [19] E. Presutti. Scaling Limits in Statistical Mechanics and Microstructures in Continuum Mechanics. Springer, Berlin, 2009. Zbl1156.82001MR2460018
  20. [20] M. Rao, H. R. Krishnamurthy and R. Pandit. Magnetic hysteresis in two model spin systems. Phys. Rev. B 42-1 (1990) 856–884. 
  21. [21] T. Tomé and M. J. de Oliveira. Dynamic phase transition in the kinetic Ising model under a time-dependent oscillating field. Phys. Rev. A41 (1990) 4251–4254. 
  22. [22] A. Visintin. Differential Models of Hysteresis. Springer, Berlin, 1994. Zbl0820.35004MR1329094
  23. [23] H. Zhu, S. Dong and J. M. Liu. Hysteresis loop area of the Ising model. Phys. Rev. B 70 (2004) 132403. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.