Random hysteresis loops
Annales de l'I.H.P. Probabilités et statistiques (2013)
- Volume: 49, Issue: 2, page 307-339
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topCarinci, Gioia. "Random hysteresis loops." Annales de l'I.H.P. Probabilités et statistiques 49.2 (2013): 307-339. <http://eudml.org/doc/271981>.
@article{Carinci2013,
abstract = {Dynamical hysteresis is a phenomenon which arises in ferromagnetic systems below the critical temperature as a response to adiabatic variations of the external magnetic field. We study the problem in the context of the mean-field Ising model with Glauber dynamics, proving that for frequencies of the magnetic field oscillations of order $N^\{-2/3\}$, $N$ the size of the system, the “critical” hysteresis loop becomes random.},
author = {Carinci, Gioia},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {hysteresis; Ising; mean field Glauber dynamics; macroscopic fluctuations; ferromagnetic Ising model; mean-field Glauber dynamics; Langevin-type equation; critical behavior; martingales; stopping times; tightness; limiting probability laws},
language = {eng},
number = {2},
pages = {307-339},
publisher = {Gauthier-Villars},
title = {Random hysteresis loops},
url = {http://eudml.org/doc/271981},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Carinci, Gioia
TI - Random hysteresis loops
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 2
SP - 307
EP - 339
AB - Dynamical hysteresis is a phenomenon which arises in ferromagnetic systems below the critical temperature as a response to adiabatic variations of the external magnetic field. We study the problem in the context of the mean-field Ising model with Glauber dynamics, proving that for frequencies of the magnetic field oscillations of order $N^{-2/3}$, $N$ the size of the system, the “critical” hysteresis loop becomes random.
LA - eng
KW - hysteresis; Ising; mean field Glauber dynamics; macroscopic fluctuations; ferromagnetic Ising model; mean-field Glauber dynamics; Langevin-type equation; critical behavior; martingales; stopping times; tightness; limiting probability laws
UR - http://eudml.org/doc/271981
ER -
References
top- [1] M. Acharyya and B. K. Chakrabarti. Response of Ising systems to oscillating and pulsed fields: Hysteresis, ac, and pulse susceptibility. Phys. Rev. B52 (1995) 6550–6568.
- [2] N. Berglund and B. Gentz. Pathwise description of dynamic pitchfork bifurcations with additive noise. Probab. Theory Related Fields122 (2002) 341–388. Zbl1008.37031MR1892851
- [3] N. Berglund and B. Gentz. A sample-paths approach to noise-induced synchronization: Stochastic resonance in a double-well potential. Ann. Appl. Probab.12 (2002) 1419–1470. Zbl1023.60052MR1936599
- [4] N. Berglund and B. Gentz. The effect of additive noise on dynamical hysteresis. Nonlinearity15 (2002) 605–632. Zbl1073.37061MR1901095
- [5] G. Bertotti. Hysteresis in Magnetism. Academic Press, Boston, 1998.
- [6] G. Bertotti and I. D. Mayergoyz. The Science of Hysteresis, Mathematical Modeling and Applications, Vol. I. Elsevier, Amsterdam, 2006. Zbl1117.34045MR2307929
- [7] P. Billingsley. Convergence of Probability Measures. Wiley, New York, 1999. Zbl0172.21201MR1700749
- [8] G. Carinci. Stochastic effects in critical regimes. Ph.D. thesis, Università degli Studi dell’Aquila, 2010.
- [9] P. Jung, G. Gray, R. Roy and P. Mandel. Scaling law for dynamical hysteresis. Phys. Rev. Lett.65 (1990) 1873–1876.
- [10] G. Korniss, M. A. Novotny, P. A. Rikvold and C. J. White. Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kinetic Ising model in an oscillating field. Phys. Rev. E 63 (2000) 016120.
- [11] G. Korniss, M. A. Novotny and P. A. Rikvold. Absence of first-order transition and tricritical point in the dynamic phase diagram of a spatially extended bistable system in an oscillating field. Phys. Rev. E 66 (2002) 056127. MR1948573
- [12] H. Landau and L. A. Shepp. On the supremum of a Gaussian process. Sankhya A32 (1970) 369–378. Zbl0218.60039MR286167
- [13] W. V. Li. Small deviations for Gaussian Markov processes under the sup-norm. J. Theoret. Probab.12 (1999) 971–984. Zbl0961.60051MR1729464
- [14] M. B. Marcus and L. A. Shepp. Sample behaviour of Gaussian processes. In Proceedings of the 6th Berkeley Symposium on Mathematics, Statistic and Probability, Vol. 2 423–441. Univ. California Press, Berkeley, CA, 1972. Zbl0379.60040MR402896
- [15] M. A. Novotny, P. A. Rikvold and S. W. Sides. Stochastic hysteresis and resonance in a kinetic Ising system. Phys. Rev. E57 (1998) 6512–6533.
- [16] M. A. Novotny, P. A. Rikvold and S. W. Sides. Kinetic Ising model in an oscillating field: Finite-size scaling at the dynamic phase transition. Phys. Rev. Lett.81 (1998) 834–837.
- [17] M. A. Novotny, P. A. Rikvold and S. W. Sides. Kinetic Ising model in an oscillating field: Avrami theory for the hysteretic response and finite-size scaling for the dynamic phase transition. Phys. Rev. E59 (1999) 2710–2729.
- [18] D. Pollard. Convergence of Stochastic Processes. Springer, New York, 1984. Zbl0544.60045MR762984
- [19] E. Presutti. Scaling Limits in Statistical Mechanics and Microstructures in Continuum Mechanics. Springer, Berlin, 2009. Zbl1156.82001MR2460018
- [20] M. Rao, H. R. Krishnamurthy and R. Pandit. Magnetic hysteresis in two model spin systems. Phys. Rev. B 42-1 (1990) 856–884.
- [21] T. Tomé and M. J. de Oliveira. Dynamic phase transition in the kinetic Ising model under a time-dependent oscillating field. Phys. Rev. A41 (1990) 4251–4254.
- [22] A. Visintin. Differential Models of Hysteresis. Springer, Berlin, 1994. Zbl0820.35004MR1329094
- [23] H. Zhu, S. Dong and J. M. Liu. Hysteresis loop area of the Ising model. Phys. Rev. B 70 (2004) 132403.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.