Anisotropic adaptive kernel deconvolution
Annales de l'I.H.P. Probabilités et statistiques (2013)
- Volume: 49, Issue: 2, page 569-609
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topComte, F., and Lacour, C.. "Anisotropic adaptive kernel deconvolution." Annales de l'I.H.P. Probabilités et statistiques 49.2 (2013): 569-609. <http://eudml.org/doc/271987>.
@article{Comte2013,
abstract = {In this paper, we consider a multidimensional convolution model for which we provide adaptive anisotropic kernel estimators of a signal density $f$ measured with additive error. For this, we generalize Fan’s (Ann. Statist.19(3) (1991) 1257–1272) estimators to multidimensional setting and use a bandwidth selection device in the spirit of Goldenshluger and Lepski’s (Ann. Statist.39(3) (2011) 1608–1632) proposal for density estimation without noise. We consider first the pointwise setting and then, we study the integrated risk. Our estimators depend on an automatically selected random bandwidth. We assume both ordinary and super smooth components for measurement errors, which have known density. We also consider both anisotropic Hölder and Sobolev classes for $f$. We provide nonasymptotic risk bounds and asymptotic rates for the resulting data driven estimator, together with lower bounds in most cases. We provide an illustrative simulation study, involving the use of Fast Fourier Transform algorithms. We conclude by a proposal of extension of the method to the case of unknown noise density, when a preliminary pure noise sample is available.},
author = {Comte, F., Lacour, C.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {adaptive kernel estimator; anisotropic estimation; deconvolution; density estimation; measurement errors; multidimensional},
language = {eng},
number = {2},
pages = {569-609},
publisher = {Gauthier-Villars},
title = {Anisotropic adaptive kernel deconvolution},
url = {http://eudml.org/doc/271987},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Comte, F.
AU - Lacour, C.
TI - Anisotropic adaptive kernel deconvolution
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 2
SP - 569
EP - 609
AB - In this paper, we consider a multidimensional convolution model for which we provide adaptive anisotropic kernel estimators of a signal density $f$ measured with additive error. For this, we generalize Fan’s (Ann. Statist.19(3) (1991) 1257–1272) estimators to multidimensional setting and use a bandwidth selection device in the spirit of Goldenshluger and Lepski’s (Ann. Statist.39(3) (2011) 1608–1632) proposal for density estimation without noise. We consider first the pointwise setting and then, we study the integrated risk. Our estimators depend on an automatically selected random bandwidth. We assume both ordinary and super smooth components for measurement errors, which have known density. We also consider both anisotropic Hölder and Sobolev classes for $f$. We provide nonasymptotic risk bounds and asymptotic rates for the resulting data driven estimator, together with lower bounds in most cases. We provide an illustrative simulation study, involving the use of Fast Fourier Transform algorithms. We conclude by a proposal of extension of the method to the case of unknown noise density, when a preliminary pure noise sample is available.
LA - eng
KW - adaptive kernel estimator; anisotropic estimation; deconvolution; density estimation; measurement errors; multidimensional
UR - http://eudml.org/doc/271987
ER -
References
top- [1] L. Birgé and P. Massart. Minimum contrast estimators on sieves: Exponential bounds and rates of convergence. Bernoulli 4(3) (1998) 329–375. Zbl0954.62033MR1653272
- [2] C. Butucea. Deconvolution of supersmooth densities with smooth noise. Canad. J. Statist. 32(2) (2004) 181–192. Zbl1056.62047MR2064400
- [3] C. Butucea and F. Comte. Adaptive estimation of linear functionals in the convolution model and applications. Bernoulli 15(1) (2009) 69–98. DOI:10.3150/08-BEJ146. Available at http://dx.doi.org/10.3150/08-BEJ146. Zbl1200.62022MR2546799
- [4] C. Butucea and A. B. Tsybakov. Sharp optimality in density deconvolution with dominating bias. I. Theory Probab. Appl. 52(1) (2008) 24–39. DOI:10.1137/S0040585X97982840. Available at http://dx.doi.org/10.1137/S0040585X97982840. Zbl1141.62021MR2354572
- [5] C. Butucea and A. B. Tsybakov. Sharp optimality in density deconvolution with dominating bias. II. Theory Probab. Appl. 52(2) (2008) 237–249. Zbl1142.62017MR2742504
- [6] F. Comte and C. Lacour. Data-driven density estimation in the presence of additive noise with unknown distribution. J. R. Stat. Soc. Ser. B Stat. Methodol. 73(4) (2011) 601–627. DOI:10.1111/j.1467-9868.2011.00775.x. Available at http://dx.doi.org/10.1111/j.1467-9868.2011.00775.x. Zbl1226.62034MR2853732
- [7] F. Comte and T. Rebafka. Adaptive density estimation in the pile-up model involving measurement errors. Preprint MAP5 2010-32, 2010. Zbl1295.62037MR3020255
- [8] F. Comte, Y. Rozenholc and M.-L. Taupin. Penalized contrast estimator for adaptive density deconvolution. Canad. J. Statist. 34(3) (2006) 431–452. Zbl1104.62033MR2328553
- [9] A. Delaigle and I. Gijbels. Bootstrap bandwidth selection in kernel density estimation from a contaminated sample. Ann. Inst. Statist. Math. 56(1) (2004) 19–47. Zbl1050.62038MR2053727
- [10] A. Delaigle, P. Hall and A. Meister. On deconvolution with repeated measurements. Ann. Statist. 36(2) (2008) 665–685. DOI:10.1214/009053607000000884. Available at http://dx.doi.org/10.1214/009053607000000884. Zbl1133.62026MR2396811
- [11] L. Devroye. Nonuniform Random Variate Generation. Springer, New York, 1986. Zbl0593.65005MR836973
- [12] L. Devroye. The double kernel method in density estimation. Ann. Inst. H. Poincaré Probab. Stat. 25(4) (1989) 533–580. Zbl0701.62044MR1045250
- [13] M. Doumic, M. Hoffmann, P. Reynaud-Bouret and V. Rivoirard. Nonparametric estimation of the division rate of a size-structured population. Working paper, 2011. Available at http://hal.archives-ouvertes.fr/hal-00578694/fr/. Zbl1317.92063MR2914292
- [14] J. Fan. On the optimal rates of convergence for nonparametric deconvolution problems. Ann. Statist. 19(3) (1991) 1257–1272. Zbl0729.62033MR1126324
- [15] J. Fan. Adaptively local one-dimensional subproblems with application to a deconvolution problem. Ann. Statist. 21(2) (1993) 600–610. DOI:10.1214/aos/1176349139. Available at http://dx.doi.org/10.1214/aos/1176349139. Zbl0785.62038MR1232507
- [16] A. Goldenshluger and O. Lepski. Uniform bounds for norms of sums of independent random functions. Ann. Probab. 39(6) (2011) 2318–2384. DOI:10.1214/10-AOP595. Available at http://dx.doi.org/10.1214/10-AOP595. Zbl1238.60023MR2932670
- [17] A. Goldenshluger and O. Lepski. Bandwidth selection in kernel density estimation: Oracle inequalities and adaptive minimax optimality. Ann. Statist. 39(3) (2011) 1608–1632. Zbl1234.62035MR2850214
- [18] P. Hall and A. Meister. A ridge-parameter approach to deconvolution. Ann. Statist. 35(4) (2007) 1535–1558. DOI:10.1214/009053607000000028. Available at http://dx.doi.org/10.1214/009053607000000028. Zbl1147.62031MR2351096
- [19] J. Johannes. Deconvolution with unknown error distribution. Ann. Statist. 37(5A) (2009) 2301–2323. DOI:10.1214/08-AOS652. Available at http://dx.doi.org/10.1214/08-AOS652. Zbl1173.62018MR2543693
- [20] G. Kerkyacharian, O. Lepski and D. Picard. Nonlinear estimation in anisotropic multi-index denoising. Probab. Theory Related Fields121 (2001) 137–170. Zbl1010.62029MR1863916
- [21] T. Klein and E. Rio. Concentration around the mean for maxima of empirical processes. Ann. Probab. 33(3) (2005) 1060–1077. DOI:10.1214/009117905000000044. Available at http://dx.doi.org/10.1214/009117905000000044. Zbl1066.60023MR2135312
- [22] C. Lacour. Rates of convergence for nonparametric deconvolution. C. R. Math. Acad. Sci. Paris 342(11) (2006) 877–882. DOI:10.1016/j.crma.2006.04.006. Available at http://dx.doi.org/10.1016/j.crma.2006.04.006. Zbl1095.62056MR2224640
- [23] E. Masry. Multivariate probability density deconvolution for stationary random processes. IEEE Trans. Inform. Theory 37(4) (1991) 1105–1115. DOI:10.1109/18.87002. Available at http://dx.doi.org/10.1109/18.87002. Zbl0732.60045MR1111811
- [24] A. Meister. Deconvolution from Fourier-oscillating error densities under decay and smoothness restrictions. Inverse Problems 24(1) (2008) 015003. DOI:10.1088/0266-5611/24/1/015003. Available at http://dx.doi.org/10.1088/0266-5611/24/1/015003. Zbl1143.65106MR2384762
- [25] A. Meister. Deconvolution Problems in Nonparametric Statistics. Lecture Notes in Statistics 193. Springer, Berlin, 2009. Zbl1178.62028MR2768576
- [26] M. H. Neumann. On the effect of estimating the error density in nonparametric deconvolution. J. Nonparametr. Stat. 7(4) (1997) 307–330. DOI:10.1080/10485259708832708. Available at http://dx.doi.org/10.1080/10485259708832708. Zbl1003.62514MR1460203
- [27] S. M. Nikol’skiĭ. Approximation of Functions of Several Variables and Imbedding Theorems. Springer, New York, 1975. Translated from the Russian by John M. Danskin, Jr., Die Grundlehren der Mathematischen Wissenschaften, Band 205. Zbl0307.46024MR374877
- [28] M. Pensky and B. Vidakovic. Adaptive wavelet estimator for nonparametric density deconvolution. Ann. Statist. 27(6) (1999) 2033–2053. Zbl0962.62030MR1765627
- [29] H. Triebel. Theory of Function Spaces. III. Monographs in Mathematics 100. Birkhäuser, Basel, 2006. Zbl1104.46001MR2250142
- [30] A. B. Tsybakov. Introduction to Nonparametric Estimation. Springer, New York, 2009. Zbl1029.62034MR2724359
- [31] E. Youndjé and M. T. Wells. Optimal bandwidth selection for multivariate kernel deconvolution density estimation. TEST 17(1) (2008) 138–162. DOI:10.1007/s11749-006-0027-5. Available at http://dx.doi.org/10.1007/s11749-006-0027-5. Zbl1148.62018MR2393356
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.