Anisotropic adaptive kernel deconvolution

F. Comte; C. Lacour

Annales de l'I.H.P. Probabilités et statistiques (2013)

  • Volume: 49, Issue: 2, page 569-609
  • ISSN: 0246-0203

Abstract

top
In this paper, we consider a multidimensional convolution model for which we provide adaptive anisotropic kernel estimators of a signal density f measured with additive error. For this, we generalize Fan’s (Ann. Statist.19(3) (1991) 1257–1272) estimators to multidimensional setting and use a bandwidth selection device in the spirit of Goldenshluger and Lepski’s (Ann. Statist.39(3) (2011) 1608–1632) proposal for density estimation without noise. We consider first the pointwise setting and then, we study the integrated risk. Our estimators depend on an automatically selected random bandwidth. We assume both ordinary and super smooth components for measurement errors, which have known density. We also consider both anisotropic Hölder and Sobolev classes for f . We provide nonasymptotic risk bounds and asymptotic rates for the resulting data driven estimator, together with lower bounds in most cases. We provide an illustrative simulation study, involving the use of Fast Fourier Transform algorithms. We conclude by a proposal of extension of the method to the case of unknown noise density, when a preliminary pure noise sample is available.

How to cite

top

Comte, F., and Lacour, C.. "Anisotropic adaptive kernel deconvolution." Annales de l'I.H.P. Probabilités et statistiques 49.2 (2013): 569-609. <http://eudml.org/doc/271987>.

@article{Comte2013,
abstract = {In this paper, we consider a multidimensional convolution model for which we provide adaptive anisotropic kernel estimators of a signal density $f$ measured with additive error. For this, we generalize Fan’s (Ann. Statist.19(3) (1991) 1257–1272) estimators to multidimensional setting and use a bandwidth selection device in the spirit of Goldenshluger and Lepski’s (Ann. Statist.39(3) (2011) 1608–1632) proposal for density estimation without noise. We consider first the pointwise setting and then, we study the integrated risk. Our estimators depend on an automatically selected random bandwidth. We assume both ordinary and super smooth components for measurement errors, which have known density. We also consider both anisotropic Hölder and Sobolev classes for $f$. We provide nonasymptotic risk bounds and asymptotic rates for the resulting data driven estimator, together with lower bounds in most cases. We provide an illustrative simulation study, involving the use of Fast Fourier Transform algorithms. We conclude by a proposal of extension of the method to the case of unknown noise density, when a preliminary pure noise sample is available.},
author = {Comte, F., Lacour, C.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {adaptive kernel estimator; anisotropic estimation; deconvolution; density estimation; measurement errors; multidimensional},
language = {eng},
number = {2},
pages = {569-609},
publisher = {Gauthier-Villars},
title = {Anisotropic adaptive kernel deconvolution},
url = {http://eudml.org/doc/271987},
volume = {49},
year = {2013},
}

TY - JOUR
AU - Comte, F.
AU - Lacour, C.
TI - Anisotropic adaptive kernel deconvolution
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 2
SP - 569
EP - 609
AB - In this paper, we consider a multidimensional convolution model for which we provide adaptive anisotropic kernel estimators of a signal density $f$ measured with additive error. For this, we generalize Fan’s (Ann. Statist.19(3) (1991) 1257–1272) estimators to multidimensional setting and use a bandwidth selection device in the spirit of Goldenshluger and Lepski’s (Ann. Statist.39(3) (2011) 1608–1632) proposal for density estimation without noise. We consider first the pointwise setting and then, we study the integrated risk. Our estimators depend on an automatically selected random bandwidth. We assume both ordinary and super smooth components for measurement errors, which have known density. We also consider both anisotropic Hölder and Sobolev classes for $f$. We provide nonasymptotic risk bounds and asymptotic rates for the resulting data driven estimator, together with lower bounds in most cases. We provide an illustrative simulation study, involving the use of Fast Fourier Transform algorithms. We conclude by a proposal of extension of the method to the case of unknown noise density, when a preliminary pure noise sample is available.
LA - eng
KW - adaptive kernel estimator; anisotropic estimation; deconvolution; density estimation; measurement errors; multidimensional
UR - http://eudml.org/doc/271987
ER -

References

top
  1. [1] L. Birgé and P. Massart. Minimum contrast estimators on sieves: Exponential bounds and rates of convergence. Bernoulli 4(3) (1998) 329–375. Zbl0954.62033MR1653272
  2. [2] C. Butucea. Deconvolution of supersmooth densities with smooth noise. Canad. J. Statist. 32(2) (2004) 181–192. Zbl1056.62047MR2064400
  3. [3] C. Butucea and F. Comte. Adaptive estimation of linear functionals in the convolution model and applications. Bernoulli 15(1) (2009) 69–98. DOI:10.3150/08-BEJ146. Available at http://dx.doi.org/10.3150/08-BEJ146. Zbl1200.62022MR2546799
  4. [4] C. Butucea and A. B. Tsybakov. Sharp optimality in density deconvolution with dominating bias. I. Theory Probab. Appl. 52(1) (2008) 24–39. DOI:10.1137/S0040585X97982840. Available at http://dx.doi.org/10.1137/S0040585X97982840. Zbl1141.62021MR2354572
  5. [5] C. Butucea and A. B. Tsybakov. Sharp optimality in density deconvolution with dominating bias. II. Theory Probab. Appl. 52(2) (2008) 237–249. Zbl1142.62017MR2742504
  6. [6] F. Comte and C. Lacour. Data-driven density estimation in the presence of additive noise with unknown distribution. J. R. Stat. Soc. Ser. B Stat. Methodol. 73(4) (2011) 601–627. DOI:10.1111/j.1467-9868.2011.00775.x. Available at http://dx.doi.org/10.1111/j.1467-9868.2011.00775.x. Zbl1226.62034MR2853732
  7. [7] F. Comte and T. Rebafka. Adaptive density estimation in the pile-up model involving measurement errors. Preprint MAP5 2010-32, 2010. Zbl1295.62037MR3020255
  8. [8] F. Comte, Y. Rozenholc and M.-L. Taupin. Penalized contrast estimator for adaptive density deconvolution. Canad. J. Statist. 34(3) (2006) 431–452. Zbl1104.62033MR2328553
  9. [9] A. Delaigle and I. Gijbels. Bootstrap bandwidth selection in kernel density estimation from a contaminated sample. Ann. Inst. Statist. Math. 56(1) (2004) 19–47. Zbl1050.62038MR2053727
  10. [10] A. Delaigle, P. Hall and A. Meister. On deconvolution with repeated measurements. Ann. Statist. 36(2) (2008) 665–685. DOI:10.1214/009053607000000884. Available at http://dx.doi.org/10.1214/009053607000000884. Zbl1133.62026MR2396811
  11. [11] L. Devroye. Nonuniform Random Variate Generation. Springer, New York, 1986. Zbl0593.65005MR836973
  12. [12] L. Devroye. The double kernel method in density estimation. Ann. Inst. H. Poincaré Probab. Stat. 25(4) (1989) 533–580. Zbl0701.62044MR1045250
  13. [13] M. Doumic, M. Hoffmann, P. Reynaud-Bouret and V. Rivoirard. Nonparametric estimation of the division rate of a size-structured population. Working paper, 2011. Available at http://hal.archives-ouvertes.fr/hal-00578694/fr/. Zbl1317.92063MR2914292
  14. [14] J. Fan. On the optimal rates of convergence for nonparametric deconvolution problems. Ann. Statist. 19(3) (1991) 1257–1272. Zbl0729.62033MR1126324
  15. [15] J. Fan. Adaptively local one-dimensional subproblems with application to a deconvolution problem. Ann. Statist. 21(2) (1993) 600–610. DOI:10.1214/aos/1176349139. Available at http://dx.doi.org/10.1214/aos/1176349139. Zbl0785.62038MR1232507
  16. [16] A. Goldenshluger and O. Lepski. Uniform bounds for norms of sums of independent random functions. Ann. Probab. 39(6) (2011) 2318–2384. DOI:10.1214/10-AOP595. Available at http://dx.doi.org/10.1214/10-AOP595. Zbl1238.60023MR2932670
  17. [17] A. Goldenshluger and O. Lepski. Bandwidth selection in kernel density estimation: Oracle inequalities and adaptive minimax optimality. Ann. Statist. 39(3) (2011) 1608–1632. Zbl1234.62035MR2850214
  18. [18] P. Hall and A. Meister. A ridge-parameter approach to deconvolution. Ann. Statist. 35(4) (2007) 1535–1558. DOI:10.1214/009053607000000028. Available at http://dx.doi.org/10.1214/009053607000000028. Zbl1147.62031MR2351096
  19. [19] J. Johannes. Deconvolution with unknown error distribution. Ann. Statist. 37(5A) (2009) 2301–2323. DOI:10.1214/08-AOS652. Available at http://dx.doi.org/10.1214/08-AOS652. Zbl1173.62018MR2543693
  20. [20] G. Kerkyacharian, O. Lepski and D. Picard. Nonlinear estimation in anisotropic multi-index denoising. Probab. Theory Related Fields121 (2001) 137–170. Zbl1010.62029MR1863916
  21. [21] T. Klein and E. Rio. Concentration around the mean for maxima of empirical processes. Ann. Probab. 33(3) (2005) 1060–1077. DOI:10.1214/009117905000000044. Available at http://dx.doi.org/10.1214/009117905000000044. Zbl1066.60023MR2135312
  22. [22] C. Lacour. Rates of convergence for nonparametric deconvolution. C. R. Math. Acad. Sci. Paris 342(11) (2006) 877–882. DOI:10.1016/j.crma.2006.04.006. Available at http://dx.doi.org/10.1016/j.crma.2006.04.006. Zbl1095.62056MR2224640
  23. [23] E. Masry. Multivariate probability density deconvolution for stationary random processes. IEEE Trans. Inform. Theory 37(4) (1991) 1105–1115. DOI:10.1109/18.87002. Available at http://dx.doi.org/10.1109/18.87002. Zbl0732.60045MR1111811
  24. [24] A. Meister. Deconvolution from Fourier-oscillating error densities under decay and smoothness restrictions. Inverse Problems 24(1) (2008) 015003. DOI:10.1088/0266-5611/24/1/015003. Available at http://dx.doi.org/10.1088/0266-5611/24/1/015003. Zbl1143.65106MR2384762
  25. [25] A. Meister. Deconvolution Problems in Nonparametric Statistics. Lecture Notes in Statistics 193. Springer, Berlin, 2009. Zbl1178.62028MR2768576
  26. [26] M. H. Neumann. On the effect of estimating the error density in nonparametric deconvolution. J. Nonparametr. Stat. 7(4) (1997) 307–330. DOI:10.1080/10485259708832708. Available at http://dx.doi.org/10.1080/10485259708832708. Zbl1003.62514MR1460203
  27. [27] S. M. Nikol’skiĭ. Approximation of Functions of Several Variables and Imbedding Theorems. Springer, New York, 1975. Translated from the Russian by John M. Danskin, Jr., Die Grundlehren der Mathematischen Wissenschaften, Band 205. Zbl0307.46024MR374877
  28. [28] M. Pensky and B. Vidakovic. Adaptive wavelet estimator for nonparametric density deconvolution. Ann. Statist. 27(6) (1999) 2033–2053. Zbl0962.62030MR1765627
  29. [29] H. Triebel. Theory of Function Spaces. III. Monographs in Mathematics 100. Birkhäuser, Basel, 2006. Zbl1104.46001MR2250142
  30. [30] A. B. Tsybakov. Introduction to Nonparametric Estimation. Springer, New York, 2009. Zbl1029.62034MR2724359
  31. [31] E. Youndjé and M. T. Wells. Optimal bandwidth selection for multivariate kernel deconvolution density estimation. TEST 17(1) (2008) 138–162. DOI:10.1007/s11749-006-0027-5. Available at http://dx.doi.org/10.1007/s11749-006-0027-5. Zbl1148.62018MR2393356

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.