Long time behaviour and stationary regime of memory gradient diffusions
Sébastien Gadat; Fabien Panloup
Annales de l'I.H.P. Probabilités et statistiques (2014)
- Volume: 50, Issue: 2, page 564-601
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] F. Alvarez. On the minimizing property of a second order dissipative system in Hilbert spaces. SIAM J. Control Optim. 38(4) (2000) 1102–1119. Zbl0954.34053MR1760062
- [2] F. Alvarez, H. Attouch, J. Bolte and P. Redont. A second-order gradient-like dissipative dynamical system with Hessian-driven damping. Application to optimization and mechanics. Journal des Mathématiques Pures et Appliquées 81(8) (2002) 747–779. Zbl1036.34072MR1930878
- [3] A. S. Antipin. Minimization of convex functions on convex sets by means of differential equations (in Russian). Differ. Eq. 30(9) (1994) 1365–1375. Zbl0852.49021MR1347800
- [4] Y. Bakhtin. Existence and uniqueness of stationary solution of nonlinear stochastic differential equation with memory. Theory Probab. Appl. 47(4) (2002) 684–688. Zbl1054.60062MR2001790
- [5] Y. Bakhtin. Lyapunov exponents for stochastic differential equations with infinite memory and application to stochastic Navier–Stokes equations. Discrete Contin. Dyn. Syst. Ser. B 6(4) (2006) 697–709. Zbl1154.34043MR2223903
- [6] Y. Bakhtin and J. Mattingly. Stationary solutions of stochastic differential equations with memory and stochastic partial differential equations. Commun. Contemp. Math. 7(5) (2005) 553–582. Zbl1098.34063MR2175090
- [7] D. Bakry, P. Cattiaux and A. Guillin. Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincare. J. Funct. Anal. 254(3) (2008) 727–759. Zbl1146.60058MR2381160
- [8] V. Bally and A. Kohatsu-Higa. Lower bounds for densities of Asian type stochastic differential equations. J. Funct. Anal. 258(9) (2010) 3134–3164. Zbl1196.60105MR2595738
- [9] M. Benaïm and M. W. Hirsch. Asymptotic pseudotrajectories and chain recurrent flows, with applications. J. Dynam. Differ. Eq. 8(1) (1996) 141–176. Zbl0878.58053MR1388167
- [10] M. Benaïm, M. Ledoux and O. Raimond. Self-interacting diffusions. Probab. Theory Related Fields 122(1) (2002) 1–41. Zbl1042.60060MR1883716
- [11] M. Benaïm and O. Raimond. Self-interacting diffusions III: Symmetric interactions. Ann. Probab. 33(5) (2003) 1716–1759. Zbl1085.60073MR2165577
- [12] F. Bolley, A. Guillin and F. Malrieu. Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov–Fokker–Planck equation. Mathematical Modelling and Numerical Analysis 44(5) (2010) 867–884. Zbl1201.82029MR2731396
- [13] A. Cabot. Asymptotics for a gradient system with memory term. Proc. Amer. Math. Soc. 137(9) (2009) 3013–3024. Zbl1177.34065MR2506460
- [14] A. Cabot, H. Engler and S. Gadat. On the long time behavior of second order differential equations with asymptotically small dissipation. Trans. Amer. Math. Soc. 361(11) (2009) 5983–6017. Zbl1191.34078MR2529922
- [15] A. Cabot, H. Engler and S. Gadat. Second-order differential equations with asymptotically small dissipation and piecewise flat potentials. Electron. J. Differential Equations17 (2009) 33–38. Zbl1171.34323MR2605582
- [16] P. Cattiaux and L. Mesnager. Hypoelliptic non-homogeneous diffusions. Probab. Theory Related Fields 123(4) (2002) 453–483. Zbl1009.60058MR1921010
- [17] M. Chaleyat-Maurel and D. Michel. Hypoellipticity theorems and conditionnal laws. Z. Wahrsch. verw. Gebiete 65(4) (1984) 573–597. Zbl0524.35028MR736147
- [18] S. Chambeu and A. Kurtzmann. Some particular self-interacting diffusions: Ergodic behaviour and almost sure convergence. Bernoulli 17(4) (2011) 1248–1267. Zbl1242.60101MR2854771
- [19] D. Coppersmith and P. Diaconis. Random walk with reinforcement. Preprint, 1987.
- [20] J. M. Coron. Control and Nonlinearity. Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2007. Zbl1140.93002MR2302744
- [21] M. Cranston and Y. Le Jan. Self-attracting diffusions: Two case studies. Math. Ann. 303(1) (1995) 87–93. Zbl0838.60052MR1348356
- [22] G. Da Prato and J. Zabczyk. Ergodicity for Infinite-Dimensional Systems. Mathematical Society Lecture Note Series. Cambridge Univ. Press, London, 1996. Zbl0849.60052MR1417491
- [23] F. Delarue and S. Menozzi. Density estimates for a random noise propagating through a chain of differential equations. J. Funct. Anal. 259(6) (2010) 1577–1630. Zbl1223.60037MR2659772
- [24] R. Douc, G. Fort and A. Guillin. Subgeometric rates of convergence of f-ergodic strong Markov processes. Stochastic Process. Appl. 119(3) (2009) 897–923. Zbl1163.60034MR2499863
- [25] D. Down, S. P. Meyn and R. L. Tweedie. Exponential and uniform ergodicity of Markov processes. Ann. Probab. 23(4) (1995) 1671–1691. Zbl0852.60075MR1379163
- [26] R. T. Durrett and L. C. G. Rogers. Asymptotic behavior of Brownian polymers. Probab. Theory Related Fields 92(3) (1992) 337–349. Zbl0767.60080MR1165516
- [27] S. N. Ethier and T. G. Kurtz. Markov Processes. Wiley, New York, 1986. Zbl0592.60049MR838085
- [28] M. Hairer. On Malliavin’s proof of Hörmander’s theorem. Bull. Sci. Math. 165(6–7) (2011) 650–666. Zbl1242.60085MR2838095
- [29] A. Haraux. Systèmes dynamiques dissipatifs et applications. R.M.A. Masson, Paris, 1991. Zbl0726.58001MR1084372
- [30] R. Z. Has’minskii. Stochastic Stability of Differential Equations. Sijthoff & Noordhoff, Alphen aan den Rijn, The Nederlands, 1980. Zbl0441.60060MR600653
- [31] L. Hörmander. Hypoelliptic second order differential equations. Acta Math. 117(4) (1967) 147–171. Zbl0156.10701MR222474
- [32] N. Ikeda and S. Watanabe. Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam, 1981. Zbl0684.60040MR1011252
- [33] J. J. Kohn. Pseudodifferential Operator with Applications. Lectures on Degenerate Elliptic Problems. Liguori, Naples, 1977. Zbl0448.35046MR660652
- [34] A. Kurtzmann. The ODE method for some self-interacting diffusions on . Ann. Inst. Henri Poincaré Probab. Stat.3 (2010) 618–643. Zbl1215.60056MR2682260
- [35] D. Lamberton and G. Pagès. Recursive computation of the invariant distribution of a diffusion: The case of a weakly mean reverting drift. Stoch. Dyn. 3(4) (2003) 435–451. Zbl1044.60069MR2030742
- [36] R. Pemantle. Vertex-reinforced random walk. Probab. Theory Related Fields1 (1992) 117–136. Zbl0741.60029MR1156453
- [37] B. T. Polyak. Introduction to Optimization. Optimization Software, New York, 1987. Zbl0652.49002MR1099605
- [38] O. Raimond. Self-attracting diffusions: Case of the constant interaction. Probab. Theory Related Fields 107(2) (1997) 177–196. Zbl0881.60055MR1431218
- [39] D. W. Stroock and S. R. S. Varadhan. Diffusion processes. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Vol. III: Probability Theory 361–368. Univ. California Press, Berkeley, 1972. Zbl0255.60055MR397899
- [40] F. Treves. Introduction to Pseudodifferential and Fourier Integral Operators. Vol. 1. Plenum Press, New York, 1980. Zbl0453.47027MR597144
- [41] C. Villani. Hypocoercivity. Mem. Amer. Math. Soc. 202(950) (2009) iv+141. Zbl1197.35004MR2562709
- [42] L. Wu. Large and moderate deviations and exponential convergence for stochastic damping Hamilton systems. Stochastic Process. Appl. 91(2) (2001) 205–238. Zbl1047.60059MR1807683