Size of the giant component in a random geometric graph
Annales de l'I.H.P. Probabilités et statistiques (2013)
- Volume: 49, Issue: 4, page 1130-1140
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topGanesan, Ghurumuruhan. "Size of the giant component in a random geometric graph." Annales de l'I.H.P. Probabilités et statistiques 49.4 (2013): 1130-1140. <http://eudml.org/doc/271997>.
@article{Ganesan2013,
abstract = {In this paper, we study the size of the giant component $C_\{G\}$ in the random geometric graph $G=G(n,r_\{n\},f)$ of $n$ nodes independently distributed each according to a certain density $f(\cdot )$ in $[0,1]^\{2\}$ satisfying $\inf _\{x\in [0,1]^\{2\}\}f(x)>$$0$. If $\frac\{c_\{1\}\}\{n\}\le r_\{n\}^\{2\}\le c_\{2\}\frac\{\log \{n\}\}\{n\}$ for some positive constants $c_\{1\}$, $c_\{2\}$ and $nr_\{n\}^\{2\}\longrightarrow \infty $ as $n\rightarrow \infty $, we show that the giant component of $G$ contains at least $n-\mathrm \{o\}(n)$ nodes with probability at least $1-\mathrm \{e\}^\{-\beta nr^\{2\}_\{n\}\}$ for all $n$ and for some positive constant $\beta $. We also obtain estimates on the diameter and number of the non-giant components of $G$.},
author = {Ganesan, Ghurumuruhan},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random geometric graphs; Size of giant component; number of components; random geometric graph; size of giant component; graph diameter},
language = {eng},
number = {4},
pages = {1130-1140},
publisher = {Gauthier-Villars},
title = {Size of the giant component in a random geometric graph},
url = {http://eudml.org/doc/271997},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Ganesan, Ghurumuruhan
TI - Size of the giant component in a random geometric graph
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 4
SP - 1130
EP - 1140
AB - In this paper, we study the size of the giant component $C_{G}$ in the random geometric graph $G=G(n,r_{n},f)$ of $n$ nodes independently distributed each according to a certain density $f(\cdot )$ in $[0,1]^{2}$ satisfying $\inf _{x\in [0,1]^{2}}f(x)>$$0$. If $\frac{c_{1}}{n}\le r_{n}^{2}\le c_{2}\frac{\log {n}}{n}$ for some positive constants $c_{1}$, $c_{2}$ and $nr_{n}^{2}\longrightarrow \infty $ as $n\rightarrow \infty $, we show that the giant component of $G$ contains at least $n-\mathrm {o}(n)$ nodes with probability at least $1-\mathrm {e}^{-\beta nr^{2}_{n}}$ for all $n$ and for some positive constant $\beta $. We also obtain estimates on the diameter and number of the non-giant components of $G$.
LA - eng
KW - random geometric graphs; Size of giant component; number of components; random geometric graph; size of giant component; graph diameter
UR - http://eudml.org/doc/271997
ER -
References
top- [1] B. Bollobas and O. Riordan. Percolation. Cambridge Univ. Press, New York, 2006. MR2283880
- [2] M. Franceschetti, O. Dousse, D. N. C. Tse and P. Thiran. Closing gap in the capacity of wireless networks via percolation theory. IEEE Trans. Inform. Theory53 (2007) 1009–1018. Zbl1310.94004MR2302808
- [3] G. Grimmett. Percolation, 2nd edition. Grundlehren der Mathematischen Wissenschaften 321. Springer, Berlin, 1999. MR1707339
- [4] P. Gupta and P. R. Kumar. Critical power for asymptotic connectivity in wireless networks. In Stochastic Analysis, Control, Optimization and Applications 547–566. Systems Control Found. Appl. Birkhäuser, Boston, MA, 1999. Zbl0916.90101MR1702981
- [5] S. Muthukrishnan and G. Pandurangan. The bin-covering technique for thresholding random geometric graph properties. In Proc. SODA 989–998. ACM, New York, 2005. Zbl1297.05221MR2298358
- [6] M. Penrose. Random Geometric Graphs. Oxford Studies in Probability 5. Oxford Univ. Press, Oxford, 2003. MR1986198
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.