Affine Dunkl processes of type A ˜ 1

François Chapon

Annales de l'I.H.P. Probabilités et statistiques (2012)

  • Volume: 48, Issue: 3, page 854-870
  • ISSN: 0246-0203

Abstract

top
We introduce the analogue of Dunkl processes in the case of an affine root system of type A ˜ 1 . The construction of the affine Dunkl process is achieved by a skew-product decomposition by means of its radial part and a jump process on the affine Weyl group, where the radial part of the affine Dunkl process is given by a Gaussian process on the ultraspherical hypergroup [ 0 , 1 ] . We prove that the affine Dunkl process is a càdlàg Markov process as well as a local martingale, study its jumps, and give a martingale decomposition, which are properties similar to those of the classical Dunkl process.

How to cite

top

Chapon, François. "Affine Dunkl processes of type $\widetilde{\mathrm {A}}_{1}$." Annales de l'I.H.P. Probabilités et statistiques 48.3 (2012): 854-870. <http://eudml.org/doc/272012>.

@article{Chapon2012,
abstract = {We introduce the analogue of Dunkl processes in the case of an affine root system of type $\widetilde\{\operatorname\{A\}\}_\{1\}$. The construction of the affine Dunkl process is achieved by a skew-product decomposition by means of its radial part and a jump process on the affine Weyl group, where the radial part of the affine Dunkl process is given by a Gaussian process on the ultraspherical hypergroup $[0,1]$. We prove that the affine Dunkl process is a càdlàg Markov process as well as a local martingale, study its jumps, and give a martingale decomposition, which are properties similar to those of the classical Dunkl process.},
author = {Chapon, François},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Dunkl processes; diffusion processes; orthogonal polynomials; Skew-product decomposition; affine root system; Weyl group; ultraspherical polynomials; Heckman-Opdam processes; affine root systems; Weyl groups; martingale decomposition},
language = {eng},
number = {3},
pages = {854-870},
publisher = {Gauthier-Villars},
title = {Affine Dunkl processes of type $\widetilde\{\mathrm \{A\}\}_\{1\}$},
url = {http://eudml.org/doc/272012},
volume = {48},
year = {2012},
}

TY - JOUR
AU - Chapon, François
TI - Affine Dunkl processes of type $\widetilde{\mathrm {A}}_{1}$
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2012
PB - Gauthier-Villars
VL - 48
IS - 3
SP - 854
EP - 870
AB - We introduce the analogue of Dunkl processes in the case of an affine root system of type $\widetilde{\operatorname{A}}_{1}$. The construction of the affine Dunkl process is achieved by a skew-product decomposition by means of its radial part and a jump process on the affine Weyl group, where the radial part of the affine Dunkl process is given by a Gaussian process on the ultraspherical hypergroup $[0,1]$. We prove that the affine Dunkl process is a càdlàg Markov process as well as a local martingale, study its jumps, and give a martingale decomposition, which are properties similar to those of the classical Dunkl process.
LA - eng
KW - Dunkl processes; diffusion processes; orthogonal polynomials; Skew-product decomposition; affine root system; Weyl group; ultraspherical polynomials; Heckman-Opdam processes; affine root systems; Weyl groups; martingale decomposition
UR - http://eudml.org/doc/272012
ER -

References

top
  1. [1] M. Aigner and G. M. Ziegler. La fonction cotangente et l’astuce de Herglotz, ch. 20. In Raisonnements Divins. Springer, Paris, 2006. 
  2. [2] R. Askey. Orthogonal Polynomials and Special Functions. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1975. Zbl0298.33008MR481145
  3. [3] D. Bakry and N. Huet. The hypergroup property and representation of Markov kernels. In Séminaire de Probabilités XLI 295–347. Lecture Notes in Math. 1934. Springer, Berlin, 2008. Zbl1215.82003MR2483738
  4. [4] P. Biane. Matrix valued Brownian motion and a paper by Pólya. In Séminaire de Probabilités XLII 171–185. Lecture Notes in Math. 1979. Springer, Berlin, 2009. Zbl1190.60075MR2599210
  5. [5] W. R. Bloom and H. Heyer. Harmonic Analysis of Probability Measures on Hypergroups. de Gruyter Studies in Mathematics 20. de Gruyter, Berlin, 1995. Zbl0828.43005MR1312826
  6. [6] S. Bochner. Sturm–Liouville and heat equations whose eigenfunctions are ultraspherical polynomials or associated Bessel functions. In Proceedings of the Conference on Differential Equations (Dedicated to A. Weinstein) 23–48. Univ. Maryland Book Store, College Park, MD, 1956. Zbl0075.28002MR82021
  7. [7] O. Chybiryakov. Skew-product representations of multidimensional Dunkl Markov processes. Ann. Inst. Henri Poincaré Probab. Stat.44 (2008) 593–611. Zbl1180.60072MR2446290
  8. [8] O. Chybiryakov, N. Demni, L. Gallardo, M. Rösler, M. Voit and M. Yor. Harmonic & Stochastic Analysis of Dunkl Processes. Hermann, Paris, 2008. 
  9. [9] N. Demni. Radial Dunkl processes associated with dihedral systems. In Séminaire de Probabilités XLII 153–169. Lecture Notes in Math. 1979. Springer, Berlin, 2009. Zbl1181.33009MR2599209
  10. [10] N. Demni. Radial Dunkl processes: Existence, uniqueness and hitting time. C. R. Math. Acad. Sci. Paris347 (2009) 1125–1128. Zbl1186.60076MR2566989
  11. [11] C. F. Dunkl. Differential-difference operators associated to reflection groups. Trans. Amer. Math. Soc.311 (1989) 167–183. Zbl0652.33004MR951883
  12. [12] E. B. Dynkin. Markov Processes, Vols I, II. Academic Press, New York, 1965. Zbl0132.37901MR193671
  13. [13] S. N. Ethier and T. G. Kurtz. Markov Processes. Characterization and Convergence. Wiley, New York, 1986. Zbl1089.60005MR838085
  14. [14] L. Gallardo and M. Yor. Some new examples of Markov processes which enjoy the time-inversion property. Probab. Theory Related Fields132 (2005) 150–162. Zbl1087.60058MR2136870
  15. [15] L. Gallardo and M. Yor. A chaotic representation property of the multidimensional Dunkl processes. Ann. Probab.34 (2006) 1530–1549. Zbl1107.60015MR2257654
  16. [16] L. Gallardo and M. Yor. Some remarkable properties of the Dunkl martingales. In In memoriam Paul-André Meyer: Séminaire de Probabilités XXXIX 337–356. Lecture Notes in Math. 1874. Springer, Berlin, 2006. Zbl1128.60027MR2276903
  17. [17] G. Gasper. Banach algebras for Jacobi series and positivity of a kernel. Ann. of Math. (2) 95 (1972) 261–280. Zbl0236.33013MR310536
  18. [18] J. E. Humphreys. Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics 29. Cambridge Univ. Press, Cambridge, 1990. Zbl0725.20028MR1066460
  19. [19] I. Karaztas and S. E. Shreve. Brownian Motion and Stochastic Calculus, 2nd edition. Springer, New York, 1991. Zbl0638.60065MR1121940
  20. [20] S. Karlin and J. McGregor. Classical diffusion processes and total positivity. J. Math. Anal. Appl.1 (1960) 163–183. Zbl0101.11102MR121844
  21. [21] S. Karlin and H. M. Taylor. A Second Course in Stochastic Processes. Academic Press, New York, 1981. Zbl0469.60001MR611513
  22. [22] W. Magnus, F. Oberhettinger and R. P. Soni. Formulas and Theorems for the Special Functions of Mathematical Physics. Springer, New York, 1966. Zbl0143.08502MR232968
  23. [23] P.-A. Meyer. Intégrales stochastiques IV. In Séminaire de Probabilités (Univ. Strasbourg, Strasbourg, 1966/67), Vol. I 142–162. Springer, Berlin, 1967. Zbl0157.25001MR231445
  24. [24] C. Rentzsch and M. Voit. Lévy processes on commutative hypergroups. In Probability on Algebraic Structures (Gainesville, FL, 1999) 83–105. Contemp. Math. 261. Amer. Math. Soc., Providence, RI, 2000. Zbl0976.60014MR1788113
  25. [25] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion. Springer, Berlin, 1999. Zbl0917.60006MR1725357
  26. [26] M. Rösler and M. Voit. Markov processes related with Dunkl operators. Adv. in Appl. Math.21 (1998) 575–643. Zbl0919.60072MR1652182
  27. [27] B. Schapira. The Heckman–Opdam Markov processes. Probab. Theory Related Fields138 (2007) 495–519. Zbl1123.58022MR2299717
  28. [28] B. Schapira. Bounded harmonic functions for the Heckman–Opdam Laplacian. Int. Math. Res. Not. IMRN (2009) 3149–3159. Zbl1177.31008MR2534993
  29. [29] G. Szegő. Orthogonal Polynomials. Amer. Math. Soc., Providence, RI, 1975. 
  30. [30] M. Voit. Asymptotc behavior of heat kernels on spheres of large dimensions. J. Multivariate Anal.59 (1996) 230–248. Zbl0877.60008MR1423733
  31. [31] M. Voit. Rate of convergence to Gaussian measures on n -spheres and Jacobi hypergroups. Ann. Probab.25 (1997) 457–477. Zbl0873.60047MR1428517

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.