Perturbed Toeplitz operators and radial determinantal processes

Torsten Ehrhardt; Brian Rider

Annales de l'I.H.P. Probabilités et statistiques (2013)

  • Volume: 49, Issue: 4, page 934-960
  • ISSN: 0246-0203

Abstract

top
We study a class of rotation invariant determinantal ensembles in the complex plane; examples include the eigenvalues of Gaussian random matrices and the roots of certain families of random polynomials. The main result is a criterion for a central limit theorem to hold for angular statistics of the points. The proof exploits an exact formula relating the generating function of such statistics to the determinant of a perturbed Toeplitz matrix.

How to cite

top

Ehrhardt, Torsten, and Rider, Brian. "Perturbed Toeplitz operators and radial determinantal processes." Annales de l'I.H.P. Probabilités et statistiques 49.4 (2013): 934-960. <http://eudml.org/doc/272031>.

@article{Ehrhardt2013,
abstract = {We study a class of rotation invariant determinantal ensembles in the complex plane; examples include the eigenvalues of Gaussian random matrices and the roots of certain families of random polynomials. The main result is a criterion for a central limit theorem to hold for angular statistics of the points. The proof exploits an exact formula relating the generating function of such statistics to the determinant of a perturbed Toeplitz matrix.},
author = {Ehrhardt, Torsten, Rider, Brian},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random matrices; determinantal processes; Toeplitz operators; Szegö–Widom limit theorem; Szegő-Widom limit theorem},
language = {eng},
number = {4},
pages = {934-960},
publisher = {Gauthier-Villars},
title = {Perturbed Toeplitz operators and radial determinantal processes},
url = {http://eudml.org/doc/272031},
volume = {49},
year = {2013},
}

TY - JOUR
AU - Ehrhardt, Torsten
AU - Rider, Brian
TI - Perturbed Toeplitz operators and radial determinantal processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 4
SP - 934
EP - 960
AB - We study a class of rotation invariant determinantal ensembles in the complex plane; examples include the eigenvalues of Gaussian random matrices and the roots of certain families of random polynomials. The main result is a criterion for a central limit theorem to hold for angular statistics of the points. The proof exploits an exact formula relating the generating function of such statistics to the determinant of a perturbed Toeplitz matrix.
LA - eng
KW - random matrices; determinantal processes; Toeplitz operators; Szegö–Widom limit theorem; Szegő-Widom limit theorem
UR - http://eudml.org/doc/272031
ER -

References

top
  1. [1] Y. Ameur, H. Hedenmalm and N. Makarov. Random normal matrices and ward identities. Preprint, 2011. Available at arXiv:1109.5941. MR2817648
  2. [2] Z. D. Bai. Circular law. Ann. Probab.25 (1997) 494–529. Zbl0871.62018MR1428519
  3. [3] E. Basor and T. Ehrhardt. Asymptotic formulas for determinants of a sum of finite Toeplitz and Hankel matrices. Math. Nachr.228 (2001) 5–45. Zbl1047.47020MR1845906
  4. [4] A. Böttcher and B. Silbermann. Analysis of Toeplitz Operators, 2nd edition. Springer, Berlin, 2006. Zbl1098.47002MR2223704
  5. [5] S.-J. Chen and J. D. Vaaler. The distribution of values of Mahler’s measure. J. Reine Angew. Math.540 (2001) 1–47. Zbl0986.11017MR1868596
  6. [6] P. Diaconis and S. Evans. Linear functionals of eigenvalues of random matrices. Trans. Amer. Math. Soc.353 (2001) 2615–2633. Zbl1008.15013MR1828463
  7. [7] T. Ehrhardt. A new algebraic approach to the Szegö–Widom limit theorem. Acta Math. Hungar.99 (2003) 233–261. Zbl1026.47019MR1973097
  8. [8] T. Ehrhardt. A generalization of Pincus’ formula and Toeplitz operator determinants. Arch. Math. (Basel) 80 (2003) 302–309. Zbl1042.47013MR1981184
  9. [9] P. J. Forrester. Fluctuation formula for complex random matrices. J. Phys. A: Math. and General 32 (1999) 159–163. Zbl0936.82001MR1687948
  10. [10] J. Ginibre. Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys.6 (1965) 440–449. Zbl0127.39304MR173726
  11. [11] I. Gohberg and M. G. Krein. Introduction to the Theory of Linear Nonselfadjoint Operators on Hilbert Space. Transl. Math. Monographs 18. Amer. Math. Soc., Providence, RI, 1969. Zbl0181.13504MR246142
  12. [12] J. M. Hammersley. The zeros of a random polynomial. In Proc. of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. II 89–111. Univ. California Press, Berkeley and Los Angeles, 1956. MR84888
  13. [13] J. B. Hough, M. Krishnapur, Y. Peres and B. Virág. Determinantal processes and independence. Probab. Surv.3 (2006) 206–229. Zbl1189.60101MR2216966
  14. [14] C. P. Hughes, J. P. Keating and N. O’Connell. On the characteristic polynomial of a random unitary matrix. Comm. Math. Phys.220 (2001) 429–451. Zbl0987.60039MR1844632
  15. [15] K. Johansson. On random matrices from the compact classical groups. Ann. Math.145 (1997) 519–545. Zbl0883.60010MR1454702
  16. [16] A. Y. Karlovich. Some algebras of functions with Fourier coefficients in weighted Orlicz sequence spaces. In Operator Theoretical Methods and Applications to Math. Physics 287–296. Operator Theory: Advances and Applications 147. Birkhäuser, Basel, 2004. Zbl1052.46040MR2053695
  17. [17] M. Krishnapur. From random matrices to random analytic functions. Ann. Probab.37 (2009) 314–346. Zbl1221.30007MR2489167
  18. [18] O. Macchi. The coincidence approach to stochastic point processes. Adv. Appl. Probab.7 (1975) 83–122. Zbl0366.60081MR380979
  19. [19] Y. Peres and B. Virág. Zeros of the i.i.d. Gaussian power series: A conformally invariant determinantal process. Acta Math.194 (2005) 1–35. MR2231337
  20. [20] B. Rider. Deviations from the circular law. Probab. Theory Related Fields130 (2004) 337–367. Zbl1071.82029MR2095933
  21. [21] B. Rider and B. Virág. The noise in the circular law and the Gaussian free field. Int. Math. Res. Not. 2007 (2007) Art. ID rnm006-32. Zbl1130.60030MR2361453
  22. [22] A. Soshnikov. Determinantal random fields. Russian Math. Surveys55 (2000) 923–975. Zbl0991.60038MR1799012
  23. [23] A. Soshnikov. Gaussian limits for determinantal random point fields. Ann. Probab.30 (2002) 171–181. Zbl1033.60063MR1894104
  24. [24] H. Widom. Asymptotic behavior of block Toeplitz matrices and determinants. II. Adv. in Math.21 (1976) 1–29. Zbl0344.47016MR409512

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.