Perturbed Toeplitz operators and radial determinantal processes
Annales de l'I.H.P. Probabilités et statistiques (2013)
- Volume: 49, Issue: 4, page 934-960
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topEhrhardt, Torsten, and Rider, Brian. "Perturbed Toeplitz operators and radial determinantal processes." Annales de l'I.H.P. Probabilités et statistiques 49.4 (2013): 934-960. <http://eudml.org/doc/272031>.
@article{Ehrhardt2013,
abstract = {We study a class of rotation invariant determinantal ensembles in the complex plane; examples include the eigenvalues of Gaussian random matrices and the roots of certain families of random polynomials. The main result is a criterion for a central limit theorem to hold for angular statistics of the points. The proof exploits an exact formula relating the generating function of such statistics to the determinant of a perturbed Toeplitz matrix.},
author = {Ehrhardt, Torsten, Rider, Brian},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random matrices; determinantal processes; Toeplitz operators; Szegö–Widom limit theorem; Szegő-Widom limit theorem},
language = {eng},
number = {4},
pages = {934-960},
publisher = {Gauthier-Villars},
title = {Perturbed Toeplitz operators and radial determinantal processes},
url = {http://eudml.org/doc/272031},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Ehrhardt, Torsten
AU - Rider, Brian
TI - Perturbed Toeplitz operators and radial determinantal processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 4
SP - 934
EP - 960
AB - We study a class of rotation invariant determinantal ensembles in the complex plane; examples include the eigenvalues of Gaussian random matrices and the roots of certain families of random polynomials. The main result is a criterion for a central limit theorem to hold for angular statistics of the points. The proof exploits an exact formula relating the generating function of such statistics to the determinant of a perturbed Toeplitz matrix.
LA - eng
KW - random matrices; determinantal processes; Toeplitz operators; Szegö–Widom limit theorem; Szegő-Widom limit theorem
UR - http://eudml.org/doc/272031
ER -
References
top- [1] Y. Ameur, H. Hedenmalm and N. Makarov. Random normal matrices and ward identities. Preprint, 2011. Available at arXiv:1109.5941. MR2817648
- [2] Z. D. Bai. Circular law. Ann. Probab.25 (1997) 494–529. Zbl0871.62018MR1428519
- [3] E. Basor and T. Ehrhardt. Asymptotic formulas for determinants of a sum of finite Toeplitz and Hankel matrices. Math. Nachr.228 (2001) 5–45. Zbl1047.47020MR1845906
- [4] A. Böttcher and B. Silbermann. Analysis of Toeplitz Operators, 2nd edition. Springer, Berlin, 2006. Zbl1098.47002MR2223704
- [5] S.-J. Chen and J. D. Vaaler. The distribution of values of Mahler’s measure. J. Reine Angew. Math.540 (2001) 1–47. Zbl0986.11017MR1868596
- [6] P. Diaconis and S. Evans. Linear functionals of eigenvalues of random matrices. Trans. Amer. Math. Soc.353 (2001) 2615–2633. Zbl1008.15013MR1828463
- [7] T. Ehrhardt. A new algebraic approach to the Szegö–Widom limit theorem. Acta Math. Hungar.99 (2003) 233–261. Zbl1026.47019MR1973097
- [8] T. Ehrhardt. A generalization of Pincus’ formula and Toeplitz operator determinants. Arch. Math. (Basel) 80 (2003) 302–309. Zbl1042.47013MR1981184
- [9] P. J. Forrester. Fluctuation formula for complex random matrices. J. Phys. A: Math. and General 32 (1999) 159–163. Zbl0936.82001MR1687948
- [10] J. Ginibre. Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys.6 (1965) 440–449. Zbl0127.39304MR173726
- [11] I. Gohberg and M. G. Krein. Introduction to the Theory of Linear Nonselfadjoint Operators on Hilbert Space. Transl. Math. Monographs 18. Amer. Math. Soc., Providence, RI, 1969. Zbl0181.13504MR246142
- [12] J. M. Hammersley. The zeros of a random polynomial. In Proc. of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. II 89–111. Univ. California Press, Berkeley and Los Angeles, 1956. MR84888
- [13] J. B. Hough, M. Krishnapur, Y. Peres and B. Virág. Determinantal processes and independence. Probab. Surv.3 (2006) 206–229. Zbl1189.60101MR2216966
- [14] C. P. Hughes, J. P. Keating and N. O’Connell. On the characteristic polynomial of a random unitary matrix. Comm. Math. Phys.220 (2001) 429–451. Zbl0987.60039MR1844632
- [15] K. Johansson. On random matrices from the compact classical groups. Ann. Math.145 (1997) 519–545. Zbl0883.60010MR1454702
- [16] A. Y. Karlovich. Some algebras of functions with Fourier coefficients in weighted Orlicz sequence spaces. In Operator Theoretical Methods and Applications to Math. Physics 287–296. Operator Theory: Advances and Applications 147. Birkhäuser, Basel, 2004. Zbl1052.46040MR2053695
- [17] M. Krishnapur. From random matrices to random analytic functions. Ann. Probab.37 (2009) 314–346. Zbl1221.30007MR2489167
- [18] O. Macchi. The coincidence approach to stochastic point processes. Adv. Appl. Probab.7 (1975) 83–122. Zbl0366.60081MR380979
- [19] Y. Peres and B. Virág. Zeros of the i.i.d. Gaussian power series: A conformally invariant determinantal process. Acta Math.194 (2005) 1–35. MR2231337
- [20] B. Rider. Deviations from the circular law. Probab. Theory Related Fields130 (2004) 337–367. Zbl1071.82029MR2095933
- [21] B. Rider and B. Virág. The noise in the circular law and the Gaussian free field. Int. Math. Res. Not. 2007 (2007) Art. ID rnm006-32. Zbl1130.60030MR2361453
- [22] A. Soshnikov. Determinantal random fields. Russian Math. Surveys55 (2000) 923–975. Zbl0991.60038MR1799012
- [23] A. Soshnikov. Gaussian limits for determinantal random point fields. Ann. Probab.30 (2002) 171–181. Zbl1033.60063MR1894104
- [24] H. Widom. Asymptotic behavior of block Toeplitz matrices and determinants. II. Adv. in Math.21 (1976) 1–29. Zbl0344.47016MR409512
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.