The right tail exponent of the Tracy–Widom β distribution

Laure Dumaz; Bálint Virág

Annales de l'I.H.P. Probabilités et statistiques (2013)

  • Volume: 49, Issue: 4, page 915-933
  • ISSN: 0246-0203

Abstract

top
The Tracy–Widom β distribution is the large dimensional limit of the top eigenvalue of β random matrix ensembles. We use the stochastic Airy operator representation to show that as a the tail of the Tracy–Widom distribution satisfies P ( 𝑇𝑊 β g t ; a ) = a - ( 3 / 4 ) β + o ( 1 ) exp - 2 3 β a 3 / 2 .

How to cite

top

Dumaz, Laure, and Virág, Bálint. "The right tail exponent of the Tracy–Widom $\beta $ distribution." Annales de l'I.H.P. Probabilités et statistiques 49.4 (2013): 915-933. <http://eudml.org/doc/272040>.

@article{Dumaz2013,
abstract = {The Tracy–Widom $\beta $ distribution is the large dimensional limit of the top eigenvalue of $\beta $ random matrix ensembles. We use the stochastic Airy operator representation to show that as $a\rightarrow \infty $ the tail of the Tracy–Widom distribution satisfies \[P(\mathit \{TW\}\_\{\beta \}&gt;a)=a^\{-(3/4)\beta +\mathrm \{o\}(1)\}\exp \biggl (-\frac\{2\}\{3\}\beta a^\{3/2\}\biggr ).\]},
author = {Dumaz, Laure, Virág, Bálint},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Tracy–Widom distribution; stochastic airy operator; beta ensembles; Tracy-Widom distribution; stochastic Airy operator},
language = {eng},
number = {4},
pages = {915-933},
publisher = {Gauthier-Villars},
title = {The right tail exponent of the Tracy–Widom $\beta $ distribution},
url = {http://eudml.org/doc/272040},
volume = {49},
year = {2013},
}

TY - JOUR
AU - Dumaz, Laure
AU - Virág, Bálint
TI - The right tail exponent of the Tracy–Widom $\beta $ distribution
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 4
SP - 915
EP - 933
AB - The Tracy–Widom $\beta $ distribution is the large dimensional limit of the top eigenvalue of $\beta $ random matrix ensembles. We use the stochastic Airy operator representation to show that as $a\rightarrow \infty $ the tail of the Tracy–Widom distribution satisfies \[P(\mathit {TW}_{\beta }&gt;a)=a^{-(3/4)\beta +\mathrm {o}(1)}\exp \biggl (-\frac{2}{3}\beta a^{3/2}\biggr ).\]
LA - eng
KW - Tracy–Widom distribution; stochastic airy operator; beta ensembles; Tracy-Widom distribution; stochastic Airy operator
UR - http://eudml.org/doc/272040
ER -

References

top
  1. [1] J. Baik. Asymptotics of Tracy–Widom distribution functions. Preprint, 2006. Available at: http://www.cirm.univ-mrs.fr/videos/2006/exposes/28/Baik.pdf. 
  2. [2] G. Borot, B. Eynard, S. N. Majumdar and C. Nadal. Large deviations of the maximal eigenvalue of random matrices. ArXiv e-prints, September 2010. MR2869955
  3. [3] L. O. Chekhov, B. Eynard and O. Marchal. Topological expansion of beta-ensemble model and quantum algebraic geometry in the sectorwise approach. ArXiv e-prints, September 2010. Zbl06225664
  4. [4] Y. Chen and S. M. Manning. Some eigenvalue distribution functions of the Laguerre ensemble. J. Phys. A 29 (23) (1996) 7561–7579. Zbl0906.60093MR1425838
  5. [5] I. Dumitriu and A. Edelman. Matrix models for beta ensembles. J. Math. Phys. 43 (11) (2002) 5830–5847. Zbl1060.82020MR1936554
  6. [6] F. J. Dyson. Statistical theory of the energy levels of complex systems. II. J. Math. Phys.3 (1962) 157–165. Zbl0105.41604MR143557
  7. [7] P. J. Forrester. Log-Gases and Random Matrices. London Mathematical Society Monographs Series 34. Princeton Univ. Press, Princeton, NJ, 2010. Zbl1217.82003MR2641363
  8. [8] J. A. Ramírez, B. Rider and B. Virág. Beta ensembles, stochastic Airy spectrum, and a diffusion. J. Amer. Math. Soc.24 (2011) 919–944. Zbl1239.60005MR2813333
  9. [9] C. A. Tracy and H. Widom. Level-spacing distributions and the Airy kernel. Comm. Math. Phys. 159 (1) (1994) 151–174. Zbl0789.35152MR1257246
  10. [10] C. A. Tracy and H. Widom. On orthogonal and symplectic matrix ensembles. Comm. Math. Phys. 177 (3) (1996) 727–754. Zbl0851.60101MR1385083
  11. [11] B. Valkó and B. Virág. Large gaps between random eigenvalues. Ann. Probab. 38 (3) (2010) 1263–1279. Zbl1223.60009MR2674999

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.