Hausdorff dimension of affine random covering sets in torus

Esa Järvenpää; Maarit Järvenpää; Henna Koivusalo; Bing Li; Ville Suomala

Annales de l'I.H.P. Probabilités et statistiques (2014)

  • Volume: 50, Issue: 4, page 1371-1384
  • ISSN: 0246-0203

Abstract

top
We calculate the almost sure Hausdorff dimension of the random covering set lim sup n ( g n + ξ n ) in d -dimensional torus 𝕋 d , where the sets g n 𝕋 d are parallelepipeds, or more generally, linear images of a set with nonempty interior, and ξ n 𝕋 d are independent and uniformly distributed random points. The dimension formula, derived from the singular values of the linear mappings, holds provided that the sequences of the singular values are decreasing.

How to cite

top

Järvenpää, Esa, et al. "Hausdorff dimension of affine random covering sets in torus." Annales de l'I.H.P. Probabilités et statistiques 50.4 (2014): 1371-1384. <http://eudml.org/doc/272045>.

@article{Järvenpää2014,
abstract = {We calculate the almost sure Hausdorff dimension of the random covering set $\limsup _\{n\rightarrow \infty \}(g_\{n\}+\xi _\{n\})$ in $d$-dimensional torus $\mathbb \{T\}^\{d\}$, where the sets $g_\{n\}\subset \mathbb \{T\}^\{d\}$ are parallelepipeds, or more generally, linear images of a set with nonempty interior, and $\xi _\{n\}\in \mathbb \{T\}^\{d\}$ are independent and uniformly distributed random points. The dimension formula, derived from the singular values of the linear mappings, holds provided that the sequences of the singular values are decreasing.},
author = {Järvenpää, Esa, Järvenpää, Maarit, Koivusalo, Henna, Li, Bing, Suomala, Ville},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random covering set; Hausdorff dimension; affine Cantor set},
language = {eng},
number = {4},
pages = {1371-1384},
publisher = {Gauthier-Villars},
title = {Hausdorff dimension of affine random covering sets in torus},
url = {http://eudml.org/doc/272045},
volume = {50},
year = {2014},
}

TY - JOUR
AU - Järvenpää, Esa
AU - Järvenpää, Maarit
AU - Koivusalo, Henna
AU - Li, Bing
AU - Suomala, Ville
TI - Hausdorff dimension of affine random covering sets in torus
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 4
SP - 1371
EP - 1384
AB - We calculate the almost sure Hausdorff dimension of the random covering set $\limsup _{n\rightarrow \infty }(g_{n}+\xi _{n})$ in $d$-dimensional torus $\mathbb {T}^{d}$, where the sets $g_{n}\subset \mathbb {T}^{d}$ are parallelepipeds, or more generally, linear images of a set with nonempty interior, and $\xi _{n}\in \mathbb {T}^{d}$ are independent and uniformly distributed random points. The dimension formula, derived from the singular values of the linear mappings, holds provided that the sequences of the singular values are decreasing.
LA - eng
KW - random covering set; Hausdorff dimension; affine Cantor set
UR - http://eudml.org/doc/272045
ER -

References

top
  1. [1] V. Beresnevich and S. Velani. A mass transference principle and the Duffin–Schaeffer conjecture for Hausdorff measures. Ann. of Math. (2) 164 (2006) 971–992. Zbl1148.11033MR2259250
  2. [2] J. Barral and A.-H. Fan. Covering numbers of different points in Dvoretzky covering. Bull. Sci. Math. 129 (4) (2005) 275–317. Zbl1068.28005MR2134123
  3. [3] P. Billard. Séries de Fourier aléatoirement bornées, continues, uniformément convergentes. Ann. Sci. École Norm. Sup. (3) 82 (1965) 131–179. Zbl0134.34102MR182832
  4. [4] A. Durand. On randomly placed arcs on the circle. In Recent Developments in Fractals and Related Fields 343–351. Appl. Numer. Harmon. Anal. Birkhäuser, Boston, 2010. Zbl1218.60007MR2743004
  5. [5] A. Dvoretzky. On covering a circle by randomly placed arcs. Proc. Natl. Acad. Sci. USA42 (1956) 199–203. Zbl0074.12301MR79365
  6. [6] Y. El Hélou. Recouvrement du tore T q par des ouverts aléatoires et dimension de Hausdorff de l’ensemble non recouvert. C. R. Acad. Sci. Paris Sér. A-B 287 (1978) A815–A818. Zbl0391.60019MR538501
  7. [7] P. Erdős. Some unsolved problems. Magyar Tud. Akad. Mat. Kutató Int. Közl.6 (1961) 221–254. Zbl0100.02001MR177846
  8. [8] K. J. Falconer. The Hausdorff dimension of self-affine fractals. Math. Proc. Cambridge Philos. Soc.103 (1988) 339–350. Zbl0642.28005MR923687
  9. [9] A.-H. Fan. How many intervals cover a point in Dvoretzky covering? Israel J. Math.131 (2002) 157–184. Zbl1009.60003MR1942307
  10. [10] A.-H. Fan and J.-P. Kahane. Rareté des intervalles recouvrant un point dans un recouvrement aléatoire. Ann. Inst. Henri Poincaré Probab. Stat.29 (1993) 453–466. Zbl0799.60013MR1246642
  11. [11] A.-H. Fan, J. Schmeling and S. Troubetzkoy. A multifractal mass transference principle for Gibbs measures with applications to dynamical Diophantine approximation. Proc. London Math. Soc. (3) 107 (2013) 1173–1219. Zbl06236019MR3126394
  12. [12] A.-H. Fan and J. Wu. On the covering by small random intervals. Ann. Inst. Henri Poincaré Probab. Stat.40 (2004) 125–131. Zbl1037.60010MR2037476
  13. [13] J. Hawkes. On the covering of small sets by random intervals. Quart. J. Math. Oxford Ser. (2) 24 (1973) 427–432. Zbl0307.60019MR324748
  14. [14] J. Hawkes. On the asymptotic behaviour of sample spacings. Math. Proc. Cambridge Philos. Soc. 90 (2) (1985) 293–303. Zbl0476.60012MR620739
  15. [15] J. Hoffmann-Jørgensen. Coverings of metric spaces with randomly placed balls. Math. Scand.32 (1973) 169–186. Zbl0285.60006MR341556
  16. [16] S. Janson. Random coverings in several dimensions. Acta Math.156 (1986) 83–118. Zbl0597.60014MR822331
  17. [17] J. Jonasson and J. E. Steif. Dynamical models for circle covering: Brownian motion and Poisson updating. Ann. Probab.36 (2008) 739–764. Zbl1147.60063MR2393996
  18. [18] J.-P. Kahane. Sur le recouvrement d’un cercle par des arcs disposés au hasard. C. R. Acad. Sci. Paris248 (1956) 184–186. Zbl0090.35801MR103533
  19. [19] J.-P. Kahane. Some Random Series of Functions. Cambridge Studies in Advanced Mathematics 5. Cambridge Univ. Press, Cambridge, 1985. Zbl0571.60002MR833073
  20. [20] J.-P. Kahane. Recouvrements aléatoires et théorie du potentiel. Colloq. Math. 60/61 (1990) 387–411. Zbl0728.60053MR1096386
  21. [21] J.-P. Kahane. Random coverings and multiplicative processes. In Fractal Geometry and Stochastics II 125–146. Progr. Probab. 46. Birkhäuser, Basel, 2000. Zbl0944.60058MR1785624
  22. [22] B. Li, N.-R. Shieh and Y.-M. Xiao. Hitting probabilities of the random covering sets. In Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics. II. Fractals in Applied Mathematics 307–323. Contemp. Math. 601. Amer. Math. Soc., Providence, RI, 2013. Zbl1321.60015MR3203868
  23. [23] L. Liao and S. Seuret. Diophantine approximation by orbits of Markov maps. Ergodic Theory Dynam. Systems33 (2013) 585–608. Zbl1296.37011MR3035299
  24. [24] B. Mandelbrot. On Dvoretzky coverings for the circle. Z. Wahrsch. Verw. Gebiete22 (1972) 158–160. Zbl0222.60044MR309163
  25. [25] B. Mandelbrot. Renewal sets and random cutouts. Z. Wahrsch. Verw. Gebiete22 (1972) 145–157. Zbl0234.60102MR309162
  26. [26] P. Mattila. Geometry of Sets and Measures in Euclidean Spaces. Cambridge Univ. Press, Cambridge, 1995. Zbl0819.28004MR1333890
  27. [27] T. Orponen. On the packing dimension and category of exceptional sets of orthogonal projections. Available at http://arxiv.org/abs/1204.2121v3. Zbl1320.28009
  28. [28] L. A. Shepp. Covering the line with random intervals. Z. Wahrsch. Verw. Gebiete23 (1972) 163–170. Zbl0238.60006MR322923
  29. [29] L. A. Shepp. Covering the circle with random arcs. Israel J. Math.11 (1972) 328–345. Zbl0241.60008MR295402

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.