Hausdorff dimension of affine random covering sets in torus
Esa Järvenpää; Maarit Järvenpää; Henna Koivusalo; Bing Li; Ville Suomala
Annales de l'I.H.P. Probabilités et statistiques (2014)
- Volume: 50, Issue: 4, page 1371-1384
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topJärvenpää, Esa, et al. "Hausdorff dimension of affine random covering sets in torus." Annales de l'I.H.P. Probabilités et statistiques 50.4 (2014): 1371-1384. <http://eudml.org/doc/272045>.
@article{Järvenpää2014,
abstract = {We calculate the almost sure Hausdorff dimension of the random covering set $\limsup _\{n\rightarrow \infty \}(g_\{n\}+\xi _\{n\})$ in $d$-dimensional torus $\mathbb \{T\}^\{d\}$, where the sets $g_\{n\}\subset \mathbb \{T\}^\{d\}$ are parallelepipeds, or more generally, linear images of a set with nonempty interior, and $\xi _\{n\}\in \mathbb \{T\}^\{d\}$ are independent and uniformly distributed random points. The dimension formula, derived from the singular values of the linear mappings, holds provided that the sequences of the singular values are decreasing.},
author = {Järvenpää, Esa, Järvenpää, Maarit, Koivusalo, Henna, Li, Bing, Suomala, Ville},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random covering set; Hausdorff dimension; affine Cantor set},
language = {eng},
number = {4},
pages = {1371-1384},
publisher = {Gauthier-Villars},
title = {Hausdorff dimension of affine random covering sets in torus},
url = {http://eudml.org/doc/272045},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Järvenpää, Esa
AU - Järvenpää, Maarit
AU - Koivusalo, Henna
AU - Li, Bing
AU - Suomala, Ville
TI - Hausdorff dimension of affine random covering sets in torus
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 4
SP - 1371
EP - 1384
AB - We calculate the almost sure Hausdorff dimension of the random covering set $\limsup _{n\rightarrow \infty }(g_{n}+\xi _{n})$ in $d$-dimensional torus $\mathbb {T}^{d}$, where the sets $g_{n}\subset \mathbb {T}^{d}$ are parallelepipeds, or more generally, linear images of a set with nonempty interior, and $\xi _{n}\in \mathbb {T}^{d}$ are independent and uniformly distributed random points. The dimension formula, derived from the singular values of the linear mappings, holds provided that the sequences of the singular values are decreasing.
LA - eng
KW - random covering set; Hausdorff dimension; affine Cantor set
UR - http://eudml.org/doc/272045
ER -
References
top- [1] V. Beresnevich and S. Velani. A mass transference principle and the Duffin–Schaeffer conjecture for Hausdorff measures. Ann. of Math. (2) 164 (2006) 971–992. Zbl1148.11033MR2259250
- [2] J. Barral and A.-H. Fan. Covering numbers of different points in Dvoretzky covering. Bull. Sci. Math. 129 (4) (2005) 275–317. Zbl1068.28005MR2134123
- [3] P. Billard. Séries de Fourier aléatoirement bornées, continues, uniformément convergentes. Ann. Sci. École Norm. Sup. (3) 82 (1965) 131–179. Zbl0134.34102MR182832
- [4] A. Durand. On randomly placed arcs on the circle. In Recent Developments in Fractals and Related Fields 343–351. Appl. Numer. Harmon. Anal. Birkhäuser, Boston, 2010. Zbl1218.60007MR2743004
- [5] A. Dvoretzky. On covering a circle by randomly placed arcs. Proc. Natl. Acad. Sci. USA42 (1956) 199–203. Zbl0074.12301MR79365
- [6] Y. El Hélou. Recouvrement du tore par des ouverts aléatoires et dimension de Hausdorff de l’ensemble non recouvert. C. R. Acad. Sci. Paris Sér. A-B 287 (1978) A815–A818. Zbl0391.60019MR538501
- [7] P. Erdős. Some unsolved problems. Magyar Tud. Akad. Mat. Kutató Int. Közl.6 (1961) 221–254. Zbl0100.02001MR177846
- [8] K. J. Falconer. The Hausdorff dimension of self-affine fractals. Math. Proc. Cambridge Philos. Soc.103 (1988) 339–350. Zbl0642.28005MR923687
- [9] A.-H. Fan. How many intervals cover a point in Dvoretzky covering? Israel J. Math.131 (2002) 157–184. Zbl1009.60003MR1942307
- [10] A.-H. Fan and J.-P. Kahane. Rareté des intervalles recouvrant un point dans un recouvrement aléatoire. Ann. Inst. Henri Poincaré Probab. Stat.29 (1993) 453–466. Zbl0799.60013MR1246642
- [11] A.-H. Fan, J. Schmeling and S. Troubetzkoy. A multifractal mass transference principle for Gibbs measures with applications to dynamical Diophantine approximation. Proc. London Math. Soc. (3) 107 (2013) 1173–1219. Zbl06236019MR3126394
- [12] A.-H. Fan and J. Wu. On the covering by small random intervals. Ann. Inst. Henri Poincaré Probab. Stat.40 (2004) 125–131. Zbl1037.60010MR2037476
- [13] J. Hawkes. On the covering of small sets by random intervals. Quart. J. Math. Oxford Ser. (2) 24 (1973) 427–432. Zbl0307.60019MR324748
- [14] J. Hawkes. On the asymptotic behaviour of sample spacings. Math. Proc. Cambridge Philos. Soc. 90 (2) (1985) 293–303. Zbl0476.60012MR620739
- [15] J. Hoffmann-Jørgensen. Coverings of metric spaces with randomly placed balls. Math. Scand.32 (1973) 169–186. Zbl0285.60006MR341556
- [16] S. Janson. Random coverings in several dimensions. Acta Math.156 (1986) 83–118. Zbl0597.60014MR822331
- [17] J. Jonasson and J. E. Steif. Dynamical models for circle covering: Brownian motion and Poisson updating. Ann. Probab.36 (2008) 739–764. Zbl1147.60063MR2393996
- [18] J.-P. Kahane. Sur le recouvrement d’un cercle par des arcs disposés au hasard. C. R. Acad. Sci. Paris248 (1956) 184–186. Zbl0090.35801MR103533
- [19] J.-P. Kahane. Some Random Series of Functions. Cambridge Studies in Advanced Mathematics 5. Cambridge Univ. Press, Cambridge, 1985. Zbl0571.60002MR833073
- [20] J.-P. Kahane. Recouvrements aléatoires et théorie du potentiel. Colloq. Math. 60/61 (1990) 387–411. Zbl0728.60053MR1096386
- [21] J.-P. Kahane. Random coverings and multiplicative processes. In Fractal Geometry and Stochastics II 125–146. Progr. Probab. 46. Birkhäuser, Basel, 2000. Zbl0944.60058MR1785624
- [22] B. Li, N.-R. Shieh and Y.-M. Xiao. Hitting probabilities of the random covering sets. In Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics. II. Fractals in Applied Mathematics 307–323. Contemp. Math. 601. Amer. Math. Soc., Providence, RI, 2013. Zbl1321.60015MR3203868
- [23] L. Liao and S. Seuret. Diophantine approximation by orbits of Markov maps. Ergodic Theory Dynam. Systems33 (2013) 585–608. Zbl1296.37011MR3035299
- [24] B. Mandelbrot. On Dvoretzky coverings for the circle. Z. Wahrsch. Verw. Gebiete22 (1972) 158–160. Zbl0222.60044MR309163
- [25] B. Mandelbrot. Renewal sets and random cutouts. Z. Wahrsch. Verw. Gebiete22 (1972) 145–157. Zbl0234.60102MR309162
- [26] P. Mattila. Geometry of Sets and Measures in Euclidean Spaces. Cambridge Univ. Press, Cambridge, 1995. Zbl0819.28004MR1333890
- [27] T. Orponen. On the packing dimension and category of exceptional sets of orthogonal projections. Available at http://arxiv.org/abs/1204.2121v3. Zbl1320.28009
- [28] L. A. Shepp. Covering the line with random intervals. Z. Wahrsch. Verw. Gebiete23 (1972) 163–170. Zbl0238.60006MR322923
- [29] L. A. Shepp. Covering the circle with random arcs. Israel J. Math.11 (1972) 328–345. Zbl0241.60008MR295402
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.