The brownian cactus I. Scaling limits of discrete cactuses
Nicolas Curien; Jean-François Le Gall; Grégory Miermont
Annales de l'I.H.P. Probabilités et statistiques (2013)
- Volume: 49, Issue: 2, page 340-373
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] D. Aldous. The continuum random tree I. Ann. Probab.19 (1991) 1–28. Zbl0722.60013MR1085326
- [2] J. Ambjørn, B. Durhuus and T. Jonsson. Quantum Geometry. A Statistical Field Theory Approach. Cambridge Monographs on Mathematical Physics. Cambridge Univ. Press, Cambridge, 1997. Zbl1096.82500MR1465433
- [3] J. Bouttier, P. Di Francesco and E. Guitter. Planar maps as labeled mobiles. Electron. J. Combin. 11 (2004) R69. Zbl1060.05045MR2097335
- [4] J. Bouttier and E. Guitter. Confluence of geodesic paths and separating loops in large planar quadrangulations. J. Stat. Mech. Theory Exp. (2009) P03001. Zbl1179.82069MR2495866
- [5] D. Burago, Y. Burago and S. Ivanov. A Course in Metric Geometry. Graduate Studies in Mathematics 33. Amer. Math. Soc., Boston, 2001. Zbl0981.51016MR1835418
- [6] S. N. Evans. Probability and Real Trees. Lecture Notes in Math. 1920. Springer, Berlin, 2008. Zbl1139.60006MR2351587
- [7] S. N. Evans, J. W. Pitman and A. Winter. Rayleigh processes, real trees, and root growth with re-grafting. Probab. Theory Related Fields134 (2006) 81–126. Zbl1086.60050MR2221786
- [8] C. Favre and M. Jonsson. The Valuative Tree. Lecture Notes in Math. 1853. Springer, Berlin, 2004. Zbl1064.14024MR2097722
- [9] M. Gromov. Metric Structures for Riemannian and Non-Riemannian Spaces. Birkhäuser, Boston, 2001. Zbl0953.53002MR1699320
- [10] N. C. Jain and S. J. Taylor. Local asymptotic laws for Brownian motion. Ann. Probab.1 (1973) 527–549. Zbl0261.60053MR365732
- [11] S. K. Lando and A. K. Zvonkin. Graphs on Surfaces and Their Applications. Encyclopedia of Mathematical Sciences 141. Springer, Berlin, 2004. Zbl1040.05001MR2036721
- [12] J. F. Le Gall. Random trees and applications. Probab. Sur.2 (2005) 245–311. Zbl1189.60161MR2203728
- [13] J. F. Le Gall. The topological structure of scaling limits of large planar maps. Invent. Math.169 (2007) 621–670. Zbl1132.60013MR2336042
- [14] J. F. Le Gall. Geodesics in large planar maps and in the Brownian map. Acta Math.205 (2010) 287–360. Zbl1214.53036MR2746349
- [15] J. F. Le Gall. Uniqueness and universality of the Brownian map. Preprint. Available at arXiv:1105.4842. Zbl1282.60014MR3112934
- [16] J. F. Le Gall and F. Paulin. Scaling limits of bipartite planar maps are homeomorphic to the -sphere. Geomet. Funct. Anal.18 (2008) 893–918. Zbl1166.60006MR2438999
- [17] J. F. Marckert and G. Miermont. Invariance principles for random bipartite planar maps. Ann. Probab.35 (2007) 1642–1705. Zbl1208.05135MR2349571
- [18] J. F. Marckert and A. Mokkadem. Limit of normalized quadrangulations. The Brownian map. Ann. Probab. 34 (2006) 2144–2202. Zbl1117.60038MR2294979
- [19] G. Miermont. An invariance principle for random planar maps. In Fourth Colloquium on Mathematics and Computer Science, Algorithms, Trees, Combinatorics and Probabilities 39–57 (electronic). Discrete Math. Theor. Comput. Sci. Proc., AG. Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2006. Zbl1195.60049MR2509622
- [20] G. Miermont. Invariance principles for spatial multitype Galton–Watson trees. Ann. Inst. Henri Poincaré Probab. Stat.44 (2008) 1128–1161. Zbl1178.60058MR2469338
- [21] G. Miermont. The Brownian map is the scaling limit of uniform random plane quadrangulations. Preprint. Available at arXiv:1104.1606. Zbl1278.60124MR3070569
- [22] G. Miermont and M. Weill. Radius and profile of random planar maps with faces of arbitrary degrees. Electron. J. Probab.13 (2008) 79–106. Zbl1190.60024MR2375600
- [23] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion. Springer, Berlin, 1991. Zbl0917.60006MR1083357
- [24] O. Schramm. Conformally invariant scaling limits: An overview and a collection of problems. In Proceedings of the International Congress of Mathematicians (Madrid, 2006), Vol. I 513–543. European Math. Soc., Zürich, 2007. Zbl1131.60088MR2334202
- [25] W. T. Tutte. A census of planar maps. Canad. J. Math.15 (1963) 249–271. Zbl0115.17305MR146823