The brownian cactus I. Scaling limits of discrete cactuses
Nicolas Curien; Jean-François Le Gall; Grégory Miermont
Annales de l'I.H.P. Probabilités et statistiques (2013)
- Volume: 49, Issue: 2, page 340-373
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topCurien, Nicolas, Le Gall, Jean-François, and Miermont, Grégory. "The brownian cactus I. Scaling limits of discrete cactuses." Annales de l'I.H.P. Probabilités et statistiques 49.2 (2013): 340-373. <http://eudml.org/doc/272049>.
@article{Curien2013,
abstract = {The cactus of a pointed graph is a discrete tree associated with this graph. Similarly, with every pointed geodesic metric space $E$, one can associate an $\mathbb \{R\}$-tree called the continuous cactus of $E$. We prove under general assumptions that the cactus of random planar maps distributed according to Boltzmann weights and conditioned to have a fixed large number of vertices converges in distribution to a limiting space called the Brownian cactus, in the Gromov–Hausdorff sense. Moreover, the Brownian cactus can be interpreted as the continuous cactus of the so-called Brownian map.},
author = {Curien, Nicolas, Le Gall, Jean-François, Miermont, Grégory},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random planar maps; scaling limit; brownian map; brownian cactus; Hausdorff dimension; Brownian map; Brownian cactus},
language = {eng},
number = {2},
pages = {340-373},
publisher = {Gauthier-Villars},
title = {The brownian cactus I. Scaling limits of discrete cactuses},
url = {http://eudml.org/doc/272049},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Curien, Nicolas
AU - Le Gall, Jean-François
AU - Miermont, Grégory
TI - The brownian cactus I. Scaling limits of discrete cactuses
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 2
SP - 340
EP - 373
AB - The cactus of a pointed graph is a discrete tree associated with this graph. Similarly, with every pointed geodesic metric space $E$, one can associate an $\mathbb {R}$-tree called the continuous cactus of $E$. We prove under general assumptions that the cactus of random planar maps distributed according to Boltzmann weights and conditioned to have a fixed large number of vertices converges in distribution to a limiting space called the Brownian cactus, in the Gromov–Hausdorff sense. Moreover, the Brownian cactus can be interpreted as the continuous cactus of the so-called Brownian map.
LA - eng
KW - random planar maps; scaling limit; brownian map; brownian cactus; Hausdorff dimension; Brownian map; Brownian cactus
UR - http://eudml.org/doc/272049
ER -
References
top- [1] D. Aldous. The continuum random tree I. Ann. Probab.19 (1991) 1–28. Zbl0722.60013MR1085326
- [2] J. Ambjørn, B. Durhuus and T. Jonsson. Quantum Geometry. A Statistical Field Theory Approach. Cambridge Monographs on Mathematical Physics. Cambridge Univ. Press, Cambridge, 1997. Zbl1096.82500MR1465433
- [3] J. Bouttier, P. Di Francesco and E. Guitter. Planar maps as labeled mobiles. Electron. J. Combin. 11 (2004) R69. Zbl1060.05045MR2097335
- [4] J. Bouttier and E. Guitter. Confluence of geodesic paths and separating loops in large planar quadrangulations. J. Stat. Mech. Theory Exp. (2009) P03001. Zbl1179.82069MR2495866
- [5] D. Burago, Y. Burago and S. Ivanov. A Course in Metric Geometry. Graduate Studies in Mathematics 33. Amer. Math. Soc., Boston, 2001. Zbl0981.51016MR1835418
- [6] S. N. Evans. Probability and Real Trees. Lecture Notes in Math. 1920. Springer, Berlin, 2008. Zbl1139.60006MR2351587
- [7] S. N. Evans, J. W. Pitman and A. Winter. Rayleigh processes, real trees, and root growth with re-grafting. Probab. Theory Related Fields134 (2006) 81–126. Zbl1086.60050MR2221786
- [8] C. Favre and M. Jonsson. The Valuative Tree. Lecture Notes in Math. 1853. Springer, Berlin, 2004. Zbl1064.14024MR2097722
- [9] M. Gromov. Metric Structures for Riemannian and Non-Riemannian Spaces. Birkhäuser, Boston, 2001. Zbl0953.53002MR1699320
- [10] N. C. Jain and S. J. Taylor. Local asymptotic laws for Brownian motion. Ann. Probab.1 (1973) 527–549. Zbl0261.60053MR365732
- [11] S. K. Lando and A. K. Zvonkin. Graphs on Surfaces and Their Applications. Encyclopedia of Mathematical Sciences 141. Springer, Berlin, 2004. Zbl1040.05001MR2036721
- [12] J. F. Le Gall. Random trees and applications. Probab. Sur.2 (2005) 245–311. Zbl1189.60161MR2203728
- [13] J. F. Le Gall. The topological structure of scaling limits of large planar maps. Invent. Math.169 (2007) 621–670. Zbl1132.60013MR2336042
- [14] J. F. Le Gall. Geodesics in large planar maps and in the Brownian map. Acta Math.205 (2010) 287–360. Zbl1214.53036MR2746349
- [15] J. F. Le Gall. Uniqueness and universality of the Brownian map. Preprint. Available at arXiv:1105.4842. Zbl1282.60014MR3112934
- [16] J. F. Le Gall and F. Paulin. Scaling limits of bipartite planar maps are homeomorphic to the -sphere. Geomet. Funct. Anal.18 (2008) 893–918. Zbl1166.60006MR2438999
- [17] J. F. Marckert and G. Miermont. Invariance principles for random bipartite planar maps. Ann. Probab.35 (2007) 1642–1705. Zbl1208.05135MR2349571
- [18] J. F. Marckert and A. Mokkadem. Limit of normalized quadrangulations. The Brownian map. Ann. Probab. 34 (2006) 2144–2202. Zbl1117.60038MR2294979
- [19] G. Miermont. An invariance principle for random planar maps. In Fourth Colloquium on Mathematics and Computer Science, Algorithms, Trees, Combinatorics and Probabilities 39–57 (electronic). Discrete Math. Theor. Comput. Sci. Proc., AG. Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2006. Zbl1195.60049MR2509622
- [20] G. Miermont. Invariance principles for spatial multitype Galton–Watson trees. Ann. Inst. Henri Poincaré Probab. Stat.44 (2008) 1128–1161. Zbl1178.60058MR2469338
- [21] G. Miermont. The Brownian map is the scaling limit of uniform random plane quadrangulations. Preprint. Available at arXiv:1104.1606. Zbl1278.60124MR3070569
- [22] G. Miermont and M. Weill. Radius and profile of random planar maps with faces of arbitrary degrees. Electron. J. Probab.13 (2008) 79–106. Zbl1190.60024MR2375600
- [23] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion. Springer, Berlin, 1991. Zbl0917.60006MR1083357
- [24] O. Schramm. Conformally invariant scaling limits: An overview and a collection of problems. In Proceedings of the International Congress of Mathematicians (Madrid, 2006), Vol. I 513–543. European Math. Soc., Zürich, 2007. Zbl1131.60088MR2334202
- [25] W. T. Tutte. A census of planar maps. Canad. J. Math.15 (1963) 249–271. Zbl0115.17305MR146823
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.