On harmonic functions of symmetric Lévy processes

Ante Mimica

Annales de l'I.H.P. Probabilités et statistiques (2014)

  • Volume: 50, Issue: 1, page 214-235
  • ISSN: 0246-0203

Abstract

top
We consider some classes of Lévy processes for which the estimate of Krylov and Safonov (as in (Potential Anal.17 (2002) 375–388)) fails and thus it is not possible to use the standard iteration technique to obtain a-priori Hölder continuity estimates of harmonic functions. Despite the failure of this method, we obtain some a-priori regularity estimates of harmonic functions for these processes. Moreover, we extend results from (Probab. Theory Related Fields135 (2006) 547–575) and obtain asymptotic behavior of the Green function and the Lévy density for a large class of subordinate Brownian motions, where the Laplace exponent of the corresponding subordinator is a slowly varying function.

How to cite

top

Mimica, Ante. "On harmonic functions of symmetric Lévy processes." Annales de l'I.H.P. Probabilités et statistiques 50.1 (2014): 214-235. <http://eudml.org/doc/272055>.

@article{Mimica2014,
abstract = {We consider some classes of Lévy processes for which the estimate of Krylov and Safonov (as in (Potential Anal.17 (2002) 375–388)) fails and thus it is not possible to use the standard iteration technique to obtain a-priori Hölder continuity estimates of harmonic functions. Despite the failure of this method, we obtain some a-priori regularity estimates of harmonic functions for these processes. Moreover, we extend results from (Probab. Theory Related Fields135 (2006) 547–575) and obtain asymptotic behavior of the Green function and the Lévy density for a large class of subordinate Brownian motions, where the Laplace exponent of the corresponding subordinator is a slowly varying function.},
author = {Mimica, Ante},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {geometric stable process; Green function; harmonic function; Lévy process; modulus of continuity; subordinator; subordinate brownian motion; subordinate Brownian motion},
language = {eng},
number = {1},
pages = {214-235},
publisher = {Gauthier-Villars},
title = {On harmonic functions of symmetric Lévy processes},
url = {http://eudml.org/doc/272055},
volume = {50},
year = {2014},
}

TY - JOUR
AU - Mimica, Ante
TI - On harmonic functions of symmetric Lévy processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 1
SP - 214
EP - 235
AB - We consider some classes of Lévy processes for which the estimate of Krylov and Safonov (as in (Potential Anal.17 (2002) 375–388)) fails and thus it is not possible to use the standard iteration technique to obtain a-priori Hölder continuity estimates of harmonic functions. Despite the failure of this method, we obtain some a-priori regularity estimates of harmonic functions for these processes. Moreover, we extend results from (Probab. Theory Related Fields135 (2006) 547–575) and obtain asymptotic behavior of the Green function and the Lévy density for a large class of subordinate Brownian motions, where the Laplace exponent of the corresponding subordinator is a slowly varying function.
LA - eng
KW - geometric stable process; Green function; harmonic function; Lévy process; modulus of continuity; subordinator; subordinate brownian motion; subordinate Brownian motion
UR - http://eudml.org/doc/272055
ER -

References

top
  1. [1] M. T. Barlow, A. Grigor’yan and T. Kumagai. Heat kernel upper bounds for jump processes and the first exit time. J. Reine Angew. Math.626 (2009) 135–157. Zbl1158.60039MR2492992
  2. [2] R. F. Bass and M. Kassmann. Harnack inequalities for non-local operators of variable order. Trans. Amer. Math. Soc.357 (2005) 837–850. Zbl1052.60060MR2095633
  3. [3] R. F. Bass and D. Levin. Harnack inequalities for jump processes. Potential Anal.17 (2002) 375–388. Zbl0997.60089MR1918242
  4. [4] J. Bertoin. Lévy Processes. Cambridge Univ. Press, Cambridge, 1996. Zbl0938.60005MR1406564
  5. [5] N. H. Bingham, C. M. Goldie and J. L. Teugels. Regular Variation. Cambridge Univ. Press, Cambridge, 1987. Zbl0667.26003MR898871
  6. [6] K. Bogdan and P. Sztonyk. Harnack’s inequality for stable Lévy processes. Potential Anal.22 (2005) 133–150. Zbl1081.60055MR2137058
  7. [7] Z.-Q. Chen and T. Kumagai. Heat kernel estimates for stable-like processes on d -sets. Stochastic Process. Appl.108 (2003) 27–62. Zbl1075.60556MR2008600
  8. [8] Z.-Q. Chen and T. Kumagai. Heat kernel estimates for jump processes of mixed types on metric measure spaces. Probab. Theory Related Fields140 (2008) 277–317. Zbl1131.60076MR2357678
  9. [9] N. Ikeda and S. Watanabe. On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes. J. Math. Kyoto Univ.2 (1962) 79–95. Zbl0118.13401MR142153
  10. [10] M. Kassmann and A. Mimica. Analysis of jump processes with nondegenerate jumping kernels. Preprint, 2011. Zbl1259.60100MR3003366
  11. [11] P. Kim and R. Song. Potential theory of truncated stable processes. Math. Z.256 (2007) 139–173. Zbl1115.60073MR2282263
  12. [12] P. W. Millar. First passage distributions of processes with independent increments. Ann. Probab.3 (1975) 215–233. Zbl0318.60063MR368177
  13. [13] A. Mimica. Harnack inequalities for some Lévy processes. Potential Anal.32 (2010) 275–303. Zbl1202.60126MR2595368
  14. [14] A. Mimica. Harnack inequality and Hölder regularity estimates for a Lévy process with small jumps of high intensity. J. Theoret. Probab. 26(2) (2013) 329–348. Zbl1279.60100MR3055806
  15. [15] A. Mimica. Heat kernel estimates for symmetric jump processes with small jumps of high intensity. Potential Anal.36 (2012) 203–222. Zbl1239.60077MR2886459
  16. [16] M. Rao, R. Song and Z. Vondraček. Green function estimates and Harnack inequality for subordinate Brownian motions. Potential Anal.25 (2006) 1–27. Zbl1107.60042MR2238934
  17. [17] R. L. Schilling, R. Song and Z. Vondraček. Bernstein Functions: Theory and Applications. de Gruyter, Berlin, 2010. Zbl1257.33001MR2598208
  18. [18] H. Šikić, R. Song and Z. Vondraček. Potential theory of geometric stable processes. Probab. Theory Related Fields135 (2006) 547–575. Zbl1099.60051
  19. [19] L. Silvestre. Hölder estimates for solutions of integro-differential equations like the fractional Laplace. Indiana Univ. Math. J.55 (2006) 1155–1174. Zbl1101.45004MR2244602
  20. [20] R. Song and Z. Vondraček. Harnack inequalities for some classes of Markov processes. Math. Z.246 (2004) 177–202. Zbl1052.60064MR2031452
  21. [21] P. Sztonyk. On harmonic measure for Lévy processes. Probab. Math. Statist.20 (2000) 383–390. Zbl0991.60067MR1825650
  22. [22] P. Sztonyk. Regularity of harmonic functions for anisotropic fractional Laplacians. Math. Nachr.283 (2010) 289–311. Zbl1194.47044MR2604123

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.