On the optimality of the empirical risk minimization procedure for the convex aggregation problem
Guillaume Lecué; Shahar Mendelson
Annales de l'I.H.P. Probabilités et statistiques (2013)
- Volume: 49, Issue: 1, page 288-306
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topLecué, Guillaume, and Mendelson, Shahar. "On the optimality of the empirical risk minimization procedure for the convex aggregation problem." Annales de l'I.H.P. Probabilités et statistiques 49.1 (2013): 288-306. <http://eudml.org/doc/272056>.
@article{Lecué2013,
abstract = {We study the performance of empirical risk minimization (ERM), with respect to the quadratic risk, in the context of convex aggregation, in which one wants to construct a procedure whose risk is as close as possible to the best function in the convex hull of an arbitrary finite class $F$. We show that ERM performed in the convex hull of $F$ is an optimal aggregation procedure for the convex aggregation problem. We also show that if this procedure is used for the problem of model selection aggregation, in which one wants to mimic the performance of the best function in $F$ itself, then its rate is the same as the one achieved for the convex aggregation problem, and thus is far from optimal. These results are obtained in deviation and are sharp up to logarithmic factors.},
author = {Lecué, Guillaume, Mendelson, Shahar},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {learning theory; aggregation theory; empirical process theory},
language = {eng},
number = {1},
pages = {288-306},
publisher = {Gauthier-Villars},
title = {On the optimality of the empirical risk minimization procedure for the convex aggregation problem},
url = {http://eudml.org/doc/272056},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Lecué, Guillaume
AU - Mendelson, Shahar
TI - On the optimality of the empirical risk minimization procedure for the convex aggregation problem
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 1
SP - 288
EP - 306
AB - We study the performance of empirical risk minimization (ERM), with respect to the quadratic risk, in the context of convex aggregation, in which one wants to construct a procedure whose risk is as close as possible to the best function in the convex hull of an arbitrary finite class $F$. We show that ERM performed in the convex hull of $F$ is an optimal aggregation procedure for the convex aggregation problem. We also show that if this procedure is used for the problem of model selection aggregation, in which one wants to mimic the performance of the best function in $F$ itself, then its rate is the same as the one achieved for the convex aggregation problem, and thus is far from optimal. These results are obtained in deviation and are sharp up to logarithmic factors.
LA - eng
KW - learning theory; aggregation theory; empirical process theory
UR - http://eudml.org/doc/272056
ER -
References
top- [1] J.-Y. Audibert. Aggregated estimators and empirical complexity for least square regression. Ann. Inst. Henri Poincaré Probab. Stat.40 (2004) 685–736. Zbl1052.62037MR2096215
- [2] J.-Y. Audibert. Progressive mixture rules are deviation suboptimal. In Advances in Neural Information Processing Systems (NIPS), 2007.
- [3] J.-Y. Audibert. Fast learning rates in statistical inference through aggregation. Ann. Statist.37 (2009) 1591–1646. Zbl05582005MR2533466
- [4] P. L. Bartlett and S. Mendelson. Empirical minimization. Probab. Theory Related Fields135 (2006) 311–334. Zbl1142.62348MR2240689
- [5] P. L. Bartlett, S. Mendelson and J. Neeman. -regularized linear regression: Persistence and oracle inequalities. Probab. Theory Related Fields154 (2012) 193–224. Zbl06125014MR2981422
- [6] L. Birgé. Model selection via testing: An alternative to (penalized) maximum likelihood estimators. Ann. Inst. Henri Poincaré Probab. Stat.42 (2006) 273–325. Zbl1333.62094MR2219712
- [7] O. Bousquet, V. Koltchinskii and D. Panchenko. Some local measures of complexity of convex hulls and generalization bounds. In Computational Learning Theory (Sydney, 2002) 59–73. Lecture Notes in Comput. Sci. 2375. Springer, Berlin, 2002. Zbl1050.68055MR2040405
- [8] F. Bunea and A. Nobel. Sequential procedures for aggregating arbitrary estimators of a conditional mean. IEEE Trans. Inform. Theory54 (2008) 1725–1735. Zbl1329.62359MR2450298
- [9] F. Bunea, A. B. Tsybakov and M. H. Wegkamp. Aggregation for Gaussian regression. Ann. Statist.35 (2007) 1674–1697. Zbl1209.62065MR2351101
- [10] A. S. Dalalyan and A. B. Tsybakov. Aggregation by exponential weighting and sharp oracle inequalities. In Learning Theory 97–111. Lecture Notes in Comput. Sci. 4539. Springer, Berlin, 2007. Zbl1203.62063MR2397581
- [11] M. Emery, A. Nemirovski and D. Voiculescu. Lectures on Probability Theory and Statistics. Lecture Notes in Math. 1738. Springer, Berlin, 2000. Zbl0941.00026MR1775638
- [12] A. Juditsky and A. Nemirovski. Functional aggregation for nonparametric regression. Ann. Statist.28 (2000) 681–712. Zbl1105.62338MR1792783
- [13] B. Klartag. Minkowski symmetrizations suffice to arrive at an approximate Euclidean ball. Ann. of Math. (2) 156 (2002) 947–960. Zbl1028.52002MR1954241
- [14] V. Koltchinskii. Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery Problems: Ecole d’Été de Probabilités de Saint-Flour XXXVIII-2008. Lecture Notes in Math. Springer, Berlin, 2011. Zbl1223.91002MR2829871
- [15] V. Koltchinskii. Local Rademacher complexities and oracle inequalities in risk minimization. Ann. Statist.34 (2006) 2593–2656. Zbl1118.62065MR2329442
- [16] G. Lecué and S. Mendelson. Aggregation via empirical risk minimization. Probab. Theory Related Fields145 (2009) 591–613. Zbl1206.62094MR2529440
- [17] G. Lecué and S. Mendelson. General non-exact oracle inequalities in the unbounded case. Preprint. Zbl1274.62247
- [18] M. Ledoux and M. Talagrand. Probability in Banach Spaces: Isoperimetry and Processes. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 23. Springer, Berlin, 1991. Zbl0748.60004MR1102015
- [19] S. Mendelson. Obtaining fast error rates in nonconvex situations. J. Complexity24 (2008) 380–397. Zbl05303163MR2426759
- [20] S. Mendelson. Empirical processes with a bounded diameter. Geom. Funct. Anal.20 (2010) 988–1027. Zbl1204.60042MR2729283
- [21] S. Mendelson, A. Pajor and N. Tomczak-Jaegermann. Reconstruction and sub-Gaussian operators in asymptotic geometric analysis. Geom. Funct. Anal.17 (2007) 1248–1282. Zbl1163.46008MR2373017
- [22] V. V. Petrov. Limit Theorems of Probability Theory. Oxford Studies in Probability 4. Oxford Univ. Press, New York, 1995. Zbl0826.60001MR1353441
- [23] G. Pisier. The Volume of Convex Bodies and Banach Space Geometry. Cambridge Tracts in Math. 94. Cambridge Univ. Press, Cambridge, 1989. Zbl0698.46008MR1036275
- [24] A. B. Tsybakov. Optimal rate of aggregation. In Computational Learning Theory and Kernel Machines (COLT-2003) 303–313. Lecture Notes in Artificial Intelligence 2777. Springer, Heidelberg, 2003. Zbl1208.62073
- [25] A. B. Tsybakov. Optimal aggregation of classifiers in statistical learning. Ann. Statist.32 (2004) 135–166. Zbl1105.62353MR2051002
- [26] A. W. van der Vaart and Jon A. Wellner. Weak Convergence and Empirical Processes: With Applications to Statistics. Springer Ser. Statist. Springer, New York, 1996. Zbl0862.60002MR1385671
- [27] Y. Yang. Mixing strategies for density estimation. Ann. Statist.28 (2000) 75–87. Zbl1106.62322MR1762904
- [28] Y. Yang. Aggregating regression procedures to improve performance. Bernoulli10 (2004) 25–47. Zbl1040.62030MR2044592
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.