A free stochastic partial differential equation
Annales de l'I.H.P. Probabilités et statistiques (2014)
- Volume: 50, Issue: 4, page 1404-1455
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topDabrowski, Yoann. "A free stochastic partial differential equation." Annales de l'I.H.P. Probabilités et statistiques 50.4 (2014): 1404-1455. <http://eudml.org/doc/272058>.
@article{Dabrowski2014,
abstract = {We get stationary solutions of a free stochastic partial differential equation. As an application, we prove equality of non-microstate and microstate free entropy dimensions under a Lipschitz like condition on conjugate variables, assuming also the von Neumann algebra $R^\{\omega \}$ embeddable. This includes an $N$-tuple of $q$-Gaussian random variables e.g. for $|q|N\le 0.13$.},
author = {Dabrowski, Yoann},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {free stochastic partial differential equations; lower bounds on microstate free entropy dimension; free probability; $q$-gaussian variables; free stochastic partial differential equations; lower bounds on microstate free entropy dimension; free probability; -Gaussian variables},
language = {eng},
number = {4},
pages = {1404-1455},
publisher = {Gauthier-Villars},
title = {A free stochastic partial differential equation},
url = {http://eudml.org/doc/272058},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Dabrowski, Yoann
TI - A free stochastic partial differential equation
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 4
SP - 1404
EP - 1455
AB - We get stationary solutions of a free stochastic partial differential equation. As an application, we prove equality of non-microstate and microstate free entropy dimensions under a Lipschitz like condition on conjugate variables, assuming also the von Neumann algebra $R^{\omega }$ embeddable. This includes an $N$-tuple of $q$-Gaussian random variables e.g. for $|q|N\le 0.13$.
LA - eng
KW - free stochastic partial differential equations; lower bounds on microstate free entropy dimension; free probability; $q$-gaussian variables; free stochastic partial differential equations; lower bounds on microstate free entropy dimension; free probability; -Gaussian variables
UR - http://eudml.org/doc/272058
ER -
References
top- [1] S. Avsec. Strong solidity of the -Gaussian algebras for all . Available at arXiv:1110.4918.
- [2] P. Biane, M. Capitaine and A. Guionnet. Large deviation bounds for matrix Brownian motion. Invent. Math.152 (2003) 433–459. Zbl1017.60026MR1975007
- [3] P. Biane and R. Speicher. Stochastic calculus with respect to free Brownian motion. Probab. Theory Related Fields112 (1998) 373–409. Zbl0919.60056MR1660906
- [4] P. Biane and D. Voiculescu. A free probability analogue of the Wasserstein metric on the trace-state space. Geom. Func. Anal.11 (2001) 1125–1138. Zbl1020.46020MR1878316
- [5] M. Bożejko. Ultracontractivity and strong Sobolev inequality for -Ornstein–Uhlenbeck semigroup().Infin. Dimens. Anal. Quantum Probab. Relat. Top.2 (1998) 203–220. Zbl1071.47510MR1811255
- [6] M. Bożejko, B. Kummerer and R. Speicher. -Gaussian processes: Non-commutative and classical aspects. Commun. Math. Phys.185 (1997) 129–154. Zbl0873.60087MR1463036
- [7] M. Bożejko and R. Speicher. An example of a generalized Brownian motion. Commun. Math. Phys.137 (1991) 519–531. Zbl0722.60033MR1105428
- [8] A. M. Cheboratev and F. Fagnola. Sufficient conditions for conservativity of minimal quantum dynamical semigroups. J. Funct. Anal.153 (1998) 382–404. Zbl0914.47040MR1614586
- [9] F. Cipriani and J.-L. Sauvageot. Derivations as square roots of Dirichlet forms. J. Funct. Anal.201 (2003) 78–120. Zbl1032.46084MR1986156
- [10] A. Connes and D. Shlyakhtenko. -homology for von Neumann algebras. J. Reine Angew. Math.586 (2005) 125–168. Zbl1083.46034MR2180603
- [11] Y. Dabrowski. A note about proving non- under a finite non-microstates free Fisher information Assumption. J. Funct. Anal.258 (2008) 3662–3674. Zbl1197.46035MR2606868
- [12] Y. Dabrowski. A non-commutative path space approach to stationary free stochastic differential equations. Preprint, 2010, available at arXiv:1006.4351. MR2606868
- [13] G. Da Prato and J. Zabczyk. Stochastic Equations in Infinite Dimensions. Cambridge Univ. Press, Cambridge, 1992. Zbl1317.60077MR1207136
- [14] E. B. Davis and J. M. Lindsay. Non-commutative symmetric Markov semigroups. Math. Z.210 (1992) 379–411. Zbl0761.46051
- [15] C. Donati-Martin. Stochastic integration with respect to Brownian motion. Probab. Theory Related Fields125 (2003) 77–95. Zbl1033.60066MR1952458
- [16] K. Dykema and A. Nica. On the Fock representation of the -commutation relations. J. Reine Angew. Math.440 (1993) 201–212. Zbl0767.46038MR1225964
- [17] F. Fagnola. H-P quantum stochastic differential equations. In Non-Commutativity, Infinite-Dimensionality, and Probability at the Crossroads. The Proceedings of the RIMS Workshop on Infinite Dimensional Analysis and Quantum Probability: Kyoto, Japan, 20–22 November, 200151–96. N. Obata, T. Matsui and A. Hora (Eds). World Scientific, River Edge, NJ, 2002. Zbl1046.81067MR2059857
- [18] F. Fagnola and S. J. Wills. Mild solutions of quantum stochastic differential equations. Electron. Commun. Probab.5 (2000) 158–171. Zbl0967.60064MR1800118
- [19] A. Guionnet and D. Shlyakhtenko. Free diffusions and matrix models with strictly convex interaction. Geom. Func. Anal.18 (2007) 1875–1916. Zbl1187.46056MR2491694
- [20] T. Kato. Perturbation Theory for Linear Operators, 2nd edition. Springer-Verlag, Berlin, 1980. Zbl0435.47001
- [21] T. Kotelenez. Stochastic Ordinary and Stochastic Partial Differential Equations: Transition from Microscopic to Macroscopic Equations. Springer, Berlin, 2007. Zbl1159.60004MR2370567
- [22] N. V. Krylov. An analytic approach to SPDEs. In Stochastic Partial Differential Equations: Six Perspectives. R. A. Carmona and B. L. Rozovskii (Eds). Mathematical Surveys and Monographs 64. American Mathetical Society, Providence, 1999. Zbl0933.60073MR1661766
- [23] N. V. Krylov and B. L. Rozovskii. Stochastic evolution equations (in Russian). Current Problems in Mathematics 14 (1979) 71–147. Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow. Zbl0436.60047MR570795
- [24] T. M. Liggett. Continuous Time Markov Processes: An Introduction. American Mathetical Society, Providence, 2010. Zbl1205.60002MR2574430
- [25] W. Lück. -Invariants: Theory and Applications to Geometry and K-Theory. Springer, Berlin, 2002. Zbl1009.55001
- [26] Z. M. Ma and M. Röckner. Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Universitext. Springer, Berlin, 1992. Zbl0826.31001
- [27] I. Mineyev and D. Shlyakhtenko. Non-microstate free entropy dimension for groups. Geom. Func. Anal.15 (2005) 476–490. Zbl1094.46039MR2153907
- [28] A. Nou. Non injectivity of the -deformed von Neumann algebra. Math. Ann.330 (2004) 17–38. Zbl1060.46051MR2091676
- [29] F. Otto and C. Villani. Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal.173 (2000) 361–400. Zbl0985.58019MR1760620
- [30] E. Pardoux. Sur des équations aux dérivés partielles stochastiques monotones. C. R. Acad. Sci. Paris Sér. A-B 275 (1972) A101–A103. Zbl0236.60039MR312572
- [31] E. Pardoux. Équations aux dérivées partielles stochastiques de type monotone. In Séminaire sur les Équations aux Dérivées Partielles (1974–1975), III Exp. No. 2 1–10. Collège de France, Paris, 1975. Zbl0363.60041MR651582
- [32] J. Peterson. A 1-cohomology characterisation of Property (T) in von Neumann algebras. Pacific J. Math.243 (2009) 181–199. Zbl1178.22010MR2550142
- [33] J. Peterson. -rigidity in von Neumann algebras. Invent. Math.175 (2009) 417–433. Zbl1170.46053MR2470111
- [34] C. Prévôt and M. Röckner. A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Mathematics 1905. Springer, Berlin, 2007. Zbl1123.60001MR2329435
- [35] B. L. Rozovskii. Stochastic Evolution Systems. Kluwer Academic, Dordrecht, 1990. MR1135324
- [36] J.-L. Sauvageot. Strong Feller semigroups on -algebras. J. Operator Theory42 (1999) 83–102. Zbl0998.46039MR1694793
- [37] D. Shlyakhtenko. Some estimates for non-microstate free entropy dimension with applications to -semicircular families. Int. Math. Res. Not.51 (2004) 2757–2772. Zbl1075.46055MR2130608
- [38] D. Shlyakhtenko. Remarks on free entropy dimension. In Operator Algebras Abel Symposia, Volume 1 249–257. Springer, Berlin, 2006. Zbl1118.46058MR2265052
- [39] D. Shlyakhtenko. Lower estimates on microstate free entropy dimension. Anal. PDE2 (2009) 119–146. Zbl1191.46053MR2547131
- [40] P. Śniady. Gaussian random matrix models for -deformed Gaussian variables. Comm. Math. Phys.216 (2001) 515–537. Zbl1021.81025
- [41] A. S. Ustunel. On the regularity of the solutions of stochastic partial differential equations. In Stochastic Differential Systems Filtering and Control. Lecture Notes in Control and Information Sciences 69 71–75. Springer, Berlin, 1985. Zbl0557.60044MR798309
- [42] D. Voiculescu. The analogs of entropy and of Fisher’s information measure in free probability theory, II. Invent. Math.118 (1994) 411–440. Zbl0820.60001MR1296352
- [43] D. Voiculescu. The analogs of entropy and of Fisher’s information measure in free probability theory, V: Non commutative Hilbert Transforms. Invent. Math. 132 (1998) 189–227. Zbl0930.46053MR1618636
- [44] D. Voiculescu. The analogs of entropy and of Fisher’s information measure in free probability theory, VI: Liberation and mutual free information. Adv. Math. 146 (1999) 101–166. Zbl0956.46045MR1711843
- [45] D. Voiculescu. Free entropy. Bull. Lond. Math. Soc.34 (2002) 257–278. Zbl1036.46051MR1887698
- [46] D. Voiculescu. A note on cyclic gradients. Indiana Univ. Math. J.49 (2000) 837–841. Zbl1007.16026MR1803213
- [47] J. B. Walsh. An introduction to stochastic partial differential equations. In École d’été de probabilités de Saint-Flour, XIV–1984. Lecture Notes in Math. 1180 265–439. Springer, Berlin, 1986. Zbl0608.60060MR876085
- [48] N. Weaver. Lipschitz algebras and derivations of von Neumann algebras. J. Funct. Anal.139 (1996) 261–300. Zbl0864.46037MR1402766
- [49] D. Zagier. Realizability of a model in infinite statistics. Commun. Math. Phys.147 (1992) 199–210. Zbl0789.47042MR1171767
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.