Three examples of brownian flows on
Annales de l'I.H.P. Probabilités et statistiques (2014)
- Volume: 50, Issue: 4, page 1323-1346
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topLe Jan, Yves, and Raimond, Olivier. "Three examples of brownian flows on $\mathbb {R}$." Annales de l'I.H.P. Probabilités et statistiques 50.4 (2014): 1323-1346. <http://eudml.org/doc/272064>.
@article{LeJan2014,
abstract = {We show that the only flow solving the stochastic differential equation (SDE) on $\mathbb \{R\}$\[\mathrm \{d\}X\_\{t\}=1\_\{\lbrace X\_\{t\}>0\rbrace \}W^\{+\}(\mathrm \{d\}t)+1\_\{\lbrace X\_\{t\}<0\rbrace \}\,\mathrm \{d\}W^\{-\}(\mathrm \{d\}t),\]
where $W^\{+\}$ and $W^\{-\}$ are two independent white noises, is a coalescing flow we will denote by $\varphi ^\{\pm \}$. The flow $\varphi ^\{\pm \}$ is a Wiener solution of the SDE. Moreover, $K^\{+\}=\mathsf \{E\}[\delta _\{\varphi ^\{\pm \}\}|W^\{+\}]$ is the unique solution (it is also a Wiener solution) of the SDE \[K^\{+\}\_\{s,t\}f(x)=f(x)+\int \_\{s\}^\{t\}K\_\{s,u\}(1\_\mathbb \{R\}^\{+\}f^\{\prime \})(x)W^\{+\}(\mathrm \{d\}u)+\frac\{1\}\{2\}\int \_\{s\}^\{t\}K\_\{s,u\}f``(x)\,\mathrm \{d\}u\]
for $s<t$, $x\in \mathbb \{R\}$ and $f$ a twice continuously differentiable function. A third flow $\varphi ^\{+\}$ can be constructed out of the $n$-point motions of $K^\{+\}$. This flow is coalescing and its $n$-point motion is given by the $n$-point motions of $K^\{+\}$ up to the first coalescing time, with the condition that when two points meet, they stay together. We note finally that $K^\{+\}=\mathsf \{E\}[\delta _\{\varphi ^\{+\}\}|W^\{+\}]$.},
author = {Le Jan, Yves, Raimond, Olivier},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {stochastic flows; coalescing flow; Arratia flow or brownian web; brownian motion with oblique reflection on a wedge; stochastic differential equation; Brownian web; Brownian motion},
language = {eng},
number = {4},
pages = {1323-1346},
publisher = {Gauthier-Villars},
title = {Three examples of brownian flows on $\mathbb \{R\}$},
url = {http://eudml.org/doc/272064},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Le Jan, Yves
AU - Raimond, Olivier
TI - Three examples of brownian flows on $\mathbb {R}$
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 4
SP - 1323
EP - 1346
AB - We show that the only flow solving the stochastic differential equation (SDE) on $\mathbb {R}$\[\mathrm {d}X_{t}=1_{\lbrace X_{t}>0\rbrace }W^{+}(\mathrm {d}t)+1_{\lbrace X_{t}<0\rbrace }\,\mathrm {d}W^{-}(\mathrm {d}t),\]
where $W^{+}$ and $W^{-}$ are two independent white noises, is a coalescing flow we will denote by $\varphi ^{\pm }$. The flow $\varphi ^{\pm }$ is a Wiener solution of the SDE. Moreover, $K^{+}=\mathsf {E}[\delta _{\varphi ^{\pm }}|W^{+}]$ is the unique solution (it is also a Wiener solution) of the SDE \[K^{+}_{s,t}f(x)=f(x)+\int _{s}^{t}K_{s,u}(1_\mathbb {R}^{+}f^{\prime })(x)W^{+}(\mathrm {d}u)+\frac{1}{2}\int _{s}^{t}K_{s,u}f``(x)\,\mathrm {d}u\]
for $s<t$, $x\in \mathbb {R}$ and $f$ a twice continuously differentiable function. A third flow $\varphi ^{+}$ can be constructed out of the $n$-point motions of $K^{+}$. This flow is coalescing and its $n$-point motion is given by the $n$-point motions of $K^{+}$ up to the first coalescing time, with the condition that when two points meet, they stay together. We note finally that $K^{+}=\mathsf {E}[\delta _{\varphi ^{+}}|W^{+}]$.
LA - eng
KW - stochastic flows; coalescing flow; Arratia flow or brownian web; brownian motion with oblique reflection on a wedge; stochastic differential equation; Brownian web; Brownian motion
UR - http://eudml.org/doc/272064
ER -
References
top- [1] R. Arratia. Brownian motion on the line. Ph.D. dissertation, Univ. Wisconsin, Madison, 1979.
- [2] M. Benabdallah, S. Bouhadou and Y. Ouknine. On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations with jumps. Preprint, 2011. Available at arXiv:1108.4016.
- [3] K. Burdzy, W. Kang and K. Ramanan. The Skorokhod problem in a time-dependent interval. Stochastic Process. Appl.119 (2009) 428–452. Zbl1186.60035MR2493998
- [4] K. Burdzy and H. Kaspi. Lenses in skew Brownian flow. Ann. Probab.32 (2004) 3085–3115. Zbl1071.60073MR2094439
- [5] L. R. G. Fontes, M. Isopi, C. M. Newman and K. Ravishankar. The Brownian web. Proc. Natl. Acad. Sci. USA 99 (2002) 15888–15893 (electronic). Zbl1069.60068MR1944976
- [6] L. R. G. Fontes, M. Isopi, C. M. Newman and K. Ravishankar. The Brownian web: Characterization and convergence. Ann. Probab.32 (2004) 2857–2883. Zbl1105.60075MR2094432
- [7] H. Hajri. Discrete approximations to solution flows of Tanaka’s SDE related to Walsh Brownian motion. In Séminaire de Probabilités XLIV 167–190. Lecture Notes in Math. 2046. Springer, Heidelberg, 2012. Zbl1261.60054MR2953347
- [8] H. Hajri. Stochastic flows related to Walsh Brownian motion. Electron. J. Probab. 16 (2011) 1563–1599 (electronic). Zbl1245.60067MR2835247
- [9] W. Kang and K. Ramanan. A Dirichlet process characterization of a class of reflected diffusions. Ann. Probab.38 (2010) 1062–1105. Zbl1202.60059MR2674994
- [10] I. Karatzas and S. E. Shreve. Brownian Motion and Stochastic Calculus, 2nd edition. Graduate Texts in Mathematics 113. Springerg, New York, 1991. Zbl0734.60060MR1121940
- [11] Y. Le Jan and O. Raimond. Integration of Brownian vector fields. Ann. Probab.30 (2002) 826–873. Zbl1037.60061MR1905858
- [12] Y. Le Jan and O. Raimond. Flows, coalescence and noise. Ann. Probab.32 (2004) 1247–1315. Zbl1065.60066MR2060298
- [13] Y. Le Jan and O. Raimond. Stochastic flows on the circle. In Probability and Partial Differential Equations in Modern Applied Mathematics 151–162. IMA Vol. Math. Appl. 140. Springer, New York, 2005. Zbl1094.60041MR2202038
- [14] Y. Le Jan and O. Raimond. Flows associated to Tanaka’s SDE. ALEA Lat. Am. J. Probab. Math. Stat.1 (2006) 21–34. Zbl1105.60038MR2235172
- [15] B. Micaux. Flots stochastiques d’opérateurs dirigés par des bruits gaussiens et poissonniens. Ph.D. dissertation, Univ. Paris-Sud, 2007.
- [16] R. Mikulevicius and B. L. Rozovskii. Stochastic Navier–Stokes equations for turbulent flows. SIAM J. Math. Anal.35 (2004) 1250–1310. Zbl1062.60061MR2050201
- [17] R. Mikulevicius and B. L. Rozovskii. Global -solutions of stochastic Navier–Stokes equations. Ann. Probab.33 (2005) 137–176. Zbl1098.60062MR2118862
- [18] V. Prokaj. The solution of the perturbed Tanaka equation is pathwise unique. Preprint, 2011. Available at arXiv:1104.0740. Zbl1284.60134MR3098074
- [19] K. Ramanan. Reflected diffusions defined via the extended Skorokhod map. Electron. J. Probab. 11 (2006) 934–992 (electronic). Zbl1111.60043MR2261058
- [20] B. Tsirelson. Nonclassical stochastic flows and continuous products. Probab. Surv. 1 (2004) 173–298 (electronic). Zbl1189.60082MR2068474
- [21] S. R. S. Varadhan and R. J. Williams. Brownian motion in a wedge with oblique reflection. Comm. Pure Appl. Math.38 (1985) 405–443. Zbl0579.60082MR792398
- [22] R. J. Williams. Reflected Brownian motion in a wedge: Semimartingale property. Z. Wahrsch. Verw. Gebiete69 (1985) 161–176. Zbl0535.60042MR779455
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.