Process-level large deviations for nonlinear Hawkes point processes
Annales de l'I.H.P. Probabilités et statistiques (2014)
- Volume: 50, Issue: 3, page 845-871
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topZhu, Lingjiong. "Process-level large deviations for nonlinear Hawkes point processes." Annales de l'I.H.P. Probabilités et statistiques 50.3 (2014): 845-871. <http://eudml.org/doc/272067>.
@article{Zhu2014,
abstract = {In this paper, we prove a process-level, also known as level-3 large deviation principle for a very general class of simple point processes, i.e. nonlinear Hawkes process, with a rate function given by the process-level entropy, which has an explicit formula.},
author = {Zhu, Lingjiong},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {large deviations; rare events; point processes; Hawkes processes; self-exciting processes},
language = {eng},
number = {3},
pages = {845-871},
publisher = {Gauthier-Villars},
title = {Process-level large deviations for nonlinear Hawkes point processes},
url = {http://eudml.org/doc/272067},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Zhu, Lingjiong
TI - Process-level large deviations for nonlinear Hawkes point processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 3
SP - 845
EP - 871
AB - In this paper, we prove a process-level, also known as level-3 large deviation principle for a very general class of simple point processes, i.e. nonlinear Hawkes process, with a rate function given by the process-level entropy, which has an explicit formula.
LA - eng
KW - large deviations; rare events; point processes; Hawkes processes; self-exciting processes
UR - http://eudml.org/doc/272067
ER -
References
top- [1] E. Bacry, S. Delattre, M. Hoffmann and J. F. Muzy. Scaling limits for Hawkes processes and application to financial statistics. Preprint, 2012. Available at arXiv:1202.0842. Zbl1292.60032
- [2] C. Bordenave and G. L. Torrisi. Large deviations of Poisson cluster processes. Stoch. Models23 (2007) 593–625. Zbl1152.60316MR2362700
- [3] P. Brémaud and L. Massoulié. Stability of nonlinear Hawkes processes. Ann. Probab.24 (1996) 1563–1588. Zbl0870.60043MR1411506
- [4] D. J. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes, 1st edition. Springer, New York, 1988. Zbl1026.60061MR950166
- [5] A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications, 2nd edition. Springer, New York, 1998. Zbl1177.60035MR1619036
- [6] M. D. Donsker and S. R. S. Varadhan. Asymptotic evaluation of certain Markov process expectations for large time. IV. Comm. Pure Appl. Math.36 (1983) 183–212. Zbl0512.60068MR690656
- [7] J. Grandell. Point processes and random measures. Adv. in Appl. Probab.9 (1977) 502–526. Zbl0376.60058MR478331
- [8] A. G. Hawkes. Spectra of some self-exciting and mutually exciting point processes. Biometrika58 (1971) 83–90. Zbl0219.60029MR278410
- [9] T. Liniger. Multivariate Hawkes processes. Ph.D. thesis, ETH, 2009. Zbl1242.62093
- [10] R. S. Lipster and A. N. Shiryaev. Statistics of Random Processes II: Applications, 2nd edition. Springer, Berlin, 2001. Zbl1008.62073MR1800858
- [11] G. Stabile and G. L. Torrisi. Risk processes with non-stationary Hawkes arrivals. Methodol. Comput. Appl. Probab.12 (2010) 415–429. Zbl1231.91239MR2665268
- [12] S. R. S. Varadhan. Special invited paper: Large deviations. Ann. Probab.36 (2008) 397–419. Zbl1146.60003
- [13] S. R. S. Varadhan. Large Deviations and Applications. SIAM, Philadelphia, 1984. Zbl0549.60023MR758258
- [14] L. Zhu. Large deviations for Markovian nonlinear Hawkes processes. Preprint, 2011. Available at arXiv:1108.2432. Zbl1312.60019MR3313748
- [15] L. Zhu. Central limit theorem for nonlinear Hawkes processes. J. Appl. Probab.50 (2013) 760–771. Zbl1306.60015MR3102513
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.