Perturbing transient random walk in a random environment with cookies of maximal strength
Annales de l'I.H.P. Probabilités et statistiques (2013)
- Volume: 49, Issue: 3, page 638-653
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topBauernschubert, Elisabeth. "Perturbing transient random walk in a random environment with cookies of maximal strength." Annales de l'I.H.P. Probabilités et statistiques 49.3 (2013): 638-653. <http://eudml.org/doc/272071>.
@article{Bauernschubert2013,
abstract = {We consider a left-transient random walk in a random environment on $\mathbb \{Z\}$ that will be disturbed by cookies inducing a drift to the right of strength 1. The number of cookies per site is i.i.d. and independent of the environment. Criteria for recurrence and transience of the random walk are obtained. For this purpose we use subcritical branching processes in random environments with immigration and formulate criteria for recurrence and transience for these processes.},
author = {Bauernschubert, Elisabeth},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {excited random walk in a random environment; cookies of strength 1; recurrence; transience; subcritical branching process in a random environment with immigration},
language = {eng},
number = {3},
pages = {638-653},
publisher = {Gauthier-Villars},
title = {Perturbing transient random walk in a random environment with cookies of maximal strength},
url = {http://eudml.org/doc/272071},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Bauernschubert, Elisabeth
TI - Perturbing transient random walk in a random environment with cookies of maximal strength
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 3
SP - 638
EP - 653
AB - We consider a left-transient random walk in a random environment on $\mathbb {Z}$ that will be disturbed by cookies inducing a drift to the right of strength 1. The number of cookies per site is i.i.d. and independent of the environment. Criteria for recurrence and transience of the random walk are obtained. For this purpose we use subcritical branching processes in random environments with immigration and formulate criteria for recurrence and transience for these processes.
LA - eng
KW - excited random walk in a random environment; cookies of strength 1; recurrence; transience; subcritical branching process in a random environment with immigration
UR - http://eudml.org/doc/272071
ER -
References
top- [1] K. B. Athreya and S. Karlin. Branching processes with random environments. II. Limit theorems. Ann. Math. Statist. 42 (1971) 1843–1858. Zbl0228.60033MR298781
- [2] K. B. Athreya and S. Karlin. On branching processes with random environments. I. Extinction probabilities. Ann. Math. Statist. 42 (1971) 1499–1520. Zbl0228.60032MR298780
- [3] K. B. Athreya and P. E. Ney. Branching Processes. Die Grundlehren der mathematischen Wissenschaften 196. Springer, New York, 1972. Zbl0259.60002MR373040
- [4] A.-L. Basdevant and A. Singh. On the speed of a cookie random walk. Probab. Theory Related Fields 141 (3–4) (2008) 625–645. Zbl1141.60383MR2391167
- [5] A.-L. Basdevant and A. Singh. Rate of growth of a transient cookie random walk. Electron. J. Probab. 13 (26) (2008) 811–851. Zbl1191.60107MR2399297
- [6] I. Benjamini and D. B. Wilson. Excited random walk. Electron. Commun. Probab. 8 (2003) 86–92 (electronic). Zbl1060.60043MR1987097
- [7] R. Durrett. Probability: Theory and Examples, 2nd edition. Duxbury Press, Belmont, 1996. Zbl1202.60002MR1609153
- [8] M. P. Holmes. Excited against the tide: A random walk with competing drifts. Ann. Inst. Henri Poincaré Probab. Stat.48 (2012) 745–773. Zbl1255.60179MR2976562
- [9] H. G. Kellerer. Ergodic behaviour of affine recursions i; criteria for recurrence and transience. Preprint, 1992. Available at http://www.mathematik.uni-muenchen.de/~kellerer/I.pdf.
- [10] E. Kosygina and M. P. W. Zerner. Positively and negatively excited random walks on integers, with branching processes. Electron. J. Probab. 13 (64) (2008) 1952–1979. Zbl1191.60113MR2453552
- [11] E. Lukacs. Stochastic Convergence, 2nd edition. Probability and Mathematical Statistics 30. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1975. Zbl0312.60011MR375405
- [12] A. G. Pakes. Limit theorems for the simple branching process allowing immigration. I. The case of finite offspring mean. Adv. in Appl. Probab. 11 (1) (1979) 31–62. Zbl0401.60077MR517550
- [13] B. Schapira. A note on multi-type cookie random walk on integers. Preprint, 2008. Available at http://arxiv.org/abs/0803.1664v2.
- [14] W. L. Smith and W. E. Wilkinson. On branching processes in random environments. Ann. Math. Statist.40 (1969) 814–827. Zbl0184.21103MR246380
- [15] F. Solomon. Random walks in a random environment. Ann. Probab.3 (1975) 1–31. Zbl0305.60029MR362503
- [16] A. Zeevi and P. W. Glynn. Recurrence properties of autoregressive processes with super-heavy-tailed innovations. J. Appl. Probab. 41 (3) (2004) 639–653. Zbl1115.62092MR2074813
- [17] O. Zeitouni. Random walks in random environment. In Lectures on Probability Theory and Statistics 189–312. Lecture Notes in Math. 1837. Springer, Berlin, 2004. Zbl1060.60103MR2071631
- [18] M. P. W. Zerner. Multi-excited random walks on integers. Probab. Theory Related Fields 133 (1) (2005) 98–122. Zbl1076.60088MR2197139
- [19] M. P. W. Zerner. Recurrence and transience of excited random walks on and strips. Electron. Commun. Probab.11 (2006) 118–128. Zbl1112.60086MR2231739
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.