Perturbing transient random walk in a random environment with cookies of maximal strength
Annales de l'I.H.P. Probabilités et statistiques (2013)
- Volume: 49, Issue: 3, page 638-653
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] K. B. Athreya and S. Karlin. Branching processes with random environments. II. Limit theorems. Ann. Math. Statist. 42 (1971) 1843–1858. Zbl0228.60033MR298781
- [2] K. B. Athreya and S. Karlin. On branching processes with random environments. I. Extinction probabilities. Ann. Math. Statist. 42 (1971) 1499–1520. Zbl0228.60032MR298780
- [3] K. B. Athreya and P. E. Ney. Branching Processes. Die Grundlehren der mathematischen Wissenschaften 196. Springer, New York, 1972. Zbl0259.60002MR373040
- [4] A.-L. Basdevant and A. Singh. On the speed of a cookie random walk. Probab. Theory Related Fields 141 (3–4) (2008) 625–645. Zbl1141.60383MR2391167
- [5] A.-L. Basdevant and A. Singh. Rate of growth of a transient cookie random walk. Electron. J. Probab. 13 (26) (2008) 811–851. Zbl1191.60107MR2399297
- [6] I. Benjamini and D. B. Wilson. Excited random walk. Electron. Commun. Probab. 8 (2003) 86–92 (electronic). Zbl1060.60043MR1987097
- [7] R. Durrett. Probability: Theory and Examples, 2nd edition. Duxbury Press, Belmont, 1996. Zbl1202.60002MR1609153
- [8] M. P. Holmes. Excited against the tide: A random walk with competing drifts. Ann. Inst. Henri Poincaré Probab. Stat.48 (2012) 745–773. Zbl1255.60179MR2976562
- [9] H. G. Kellerer. Ergodic behaviour of affine recursions i; criteria for recurrence and transience. Preprint, 1992. Available at http://www.mathematik.uni-muenchen.de/~kellerer/I.pdf.
- [10] E. Kosygina and M. P. W. Zerner. Positively and negatively excited random walks on integers, with branching processes. Electron. J. Probab. 13 (64) (2008) 1952–1979. Zbl1191.60113MR2453552
- [11] E. Lukacs. Stochastic Convergence, 2nd edition. Probability and Mathematical Statistics 30. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1975. Zbl0312.60011MR375405
- [12] A. G. Pakes. Limit theorems for the simple branching process allowing immigration. I. The case of finite offspring mean. Adv. in Appl. Probab. 11 (1) (1979) 31–62. Zbl0401.60077MR517550
- [13] B. Schapira. A note on multi-type cookie random walk on integers. Preprint, 2008. Available at http://arxiv.org/abs/0803.1664v2.
- [14] W. L. Smith and W. E. Wilkinson. On branching processes in random environments. Ann. Math. Statist.40 (1969) 814–827. Zbl0184.21103MR246380
- [15] F. Solomon. Random walks in a random environment. Ann. Probab.3 (1975) 1–31. Zbl0305.60029MR362503
- [16] A. Zeevi and P. W. Glynn. Recurrence properties of autoregressive processes with super-heavy-tailed innovations. J. Appl. Probab. 41 (3) (2004) 639–653. Zbl1115.62092MR2074813
- [17] O. Zeitouni. Random walks in random environment. In Lectures on Probability Theory and Statistics 189–312. Lecture Notes in Math. 1837. Springer, Berlin, 2004. Zbl1060.60103MR2071631
- [18] M. P. W. Zerner. Multi-excited random walks on integers. Probab. Theory Related Fields 133 (1) (2005) 98–122. Zbl1076.60088MR2197139
- [19] M. P. W. Zerner. Recurrence and transience of excited random walks on and strips. Electron. Commun. Probab.11 (2006) 118–128. Zbl1112.60086MR2231739