Minimal supersolutions of BSDEs with lower semicontinuous generators
Gregor Heyne; Michael Kupper; Christoph Mainberger
Annales de l'I.H.P. Probabilités et statistiques (2014)
- Volume: 50, Issue: 2, page 524-538
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topHeyne, Gregor, Kupper, Michael, and Mainberger, Christoph. "Minimal supersolutions of BSDEs with lower semicontinuous generators." Annales de l'I.H.P. Probabilités et statistiques 50.2 (2014): 524-538. <http://eudml.org/doc/272073>.
@article{Heyne2014,
abstract = {We study minimal supersolutions of backward stochastic differential equations. We show the existence and uniqueness of the minimal supersolution, if the generator is jointly lower semicontinuous, bounded from below by an affine function of the control variable, and satisfies a specific normalization property. Semimartingale convergence is used to establish the main result.},
author = {Heyne, Gregor, Kupper, Michael, Mainberger, Christoph},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {supersolutions of backward stochastic differential equations; semimartingale convergence},
language = {eng},
number = {2},
pages = {524-538},
publisher = {Gauthier-Villars},
title = {Minimal supersolutions of BSDEs with lower semicontinuous generators},
url = {http://eudml.org/doc/272073},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Heyne, Gregor
AU - Kupper, Michael
AU - Mainberger, Christoph
TI - Minimal supersolutions of BSDEs with lower semicontinuous generators
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 2
SP - 524
EP - 538
AB - We study minimal supersolutions of backward stochastic differential equations. We show the existence and uniqueness of the minimal supersolution, if the generator is jointly lower semicontinuous, bounded from below by an affine function of the control variable, and satisfies a specific normalization property. Semimartingale convergence is used to establish the main result.
LA - eng
KW - supersolutions of backward stochastic differential equations; semimartingale convergence
UR - http://eudml.org/doc/272073
ER -
References
top- [1] K. Bahlali, E. Essaky and M. Hassani. Multidimensional BSDEs with super-linear growth coefficient: Application to degenerate systems of semilinear PDEs. C. R. Math. Acad. Sci. Paris348 (2010) 677–682. Zbl1202.60094MR2652497
- [2] M. Barlow and P. E. Protter. On convergence of semimartingales. In Séminaire de Probabilités XXIV 188–193. Lect. Notes Math. 1426. Springer, Berlin, 1988/1989. Zbl0703.60041MR1071540
- [3] P. Cheridito and M. Stadje. Existence, minimality and approximation of solutions to BSDEs with convex drivers. Stochastic Process. Appl.122 (2012) 1540–1565. Zbl1252.60053MR2914762
- [4] F. Delbaen and W. Schachermayer. A compactness principle for bounded sequences of martingales with applications. In Proceedings of the Seminar of Stochastic Analysis, Random Fields and Applications 133–173. Progress in Probability 45. Birkhäuser, Basel, 1996. Zbl0939.60024MR1712239
- [5] F. Delbaen, Y. Hu and X. Bao. Backward SDEs with superquadratic growth. Probab. Theory Related Fields150 (2011) 145–192. Zbl1253.60072MR2800907
- [6] C. Dellacherie and P. A. Meyer. Probabilities and Potential. B: Theory of Martingales. North-Holland Mathematics Studies 72. North-Holland, Amsterdam, 1982. Translated from the French by J. P. Wilson. Zbl0494.60002MR745449
- [7] S. Drapeau, G. Heyne and M. Kupper. Minimal supersolutions of convex BSDEs. Ann. Probab.41 (2013) 3973–4001. Zbl1284.60116MR3161467
- [8] N. El Karoui, S. Peng and M. C. Quenez. Backward stochastic differential equations in finance. Math. Finance7 (1997) 1–71. Zbl0884.90035MR1434407
- [9] I. Karatzas and S. E. Shreve. Brownian Motion and Stochastic Calculus, 2nd edition. Graduate Texts in Mathematics 113. Springer, New York, 1991. Zbl0734.60060MR1121940
- [10] M. Kobylanski. Backward stochastic differential equations and partial differential equations with quadratic growth. Ann. Probab.28 (2000) 558–602. Zbl1044.60045MR1782267
- [11] E. Pardoux and S. Peng. Adapted solution of a backward stochastic differential equation. Systems Control Lett.14 (1990) 55–61. Zbl0692.93064MR1037747
- [12] S. Peng. Backward SDE and related -expectation. In Backward Stochastic Differential Equation 141–159. Pitman Research Notes in Mathematics Series 364. Longman, Harlow, 1997. Zbl0892.60066MR1752680
- [13] S. Peng. Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob–Meyer’s type. Probab. Theory Related Fields113 (1999) 473–499. Zbl0953.60059MR1717527
- [14] S. Peng and M. Xu. The smallest -supermartingale and reflected BSDE with single and double obstacles. Ann. Inst. Henri Poincaré Probab. Stat.41 (2005) 605–630. Zbl1071.60049MR2139035
- [15] P. E. Protter. Stochastic Integration and Differential Equations, 2nd edition. Springer, Berlin, 2005. Version 2.1, Corrected third printing. Zbl0694.60047MR2273672
- [16] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion, 3rd edition. Fundamental Principles of Mathematical Sciences 293. Springer, Berlin, 1999. Zbl0917.60006MR1725357
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.